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A GENERALIZATION OF WEIERSTRASS' AND 
F E K E T E ' S MEAN-VALUE THEOREMS* 

BY MORRIS MARDEN 

1. Introduction. Three of our recent papers have dealt with 
the problem of determining zero-free regions for certain sums 
of rational functions.! Our study was based largely upon the 

familiar principle that a vector sum ^OPj cannot vanish if all 
the points Pj lie in the same angle with vertex at O and with a 
magnitude of less than T radians. In the present paper, we pro
pose to employ the same principle in order to generalize two 
mean-value theorems. 

The first of these theorems will be that of Weiers trass. $ If 
g(z) is real and positive on a curve C: z = \p(t), (a^t^b), and if 
w=f(z) maps C one-to-one continuously on a regular curve V of 
the w-plane, any convex region containing T also contains the 
point a as defined by the equation 

/ • » & / » & 

f(t)g(t)dt = <T g(t)dt. 
J a J a 

In §2, the above hypothesis on g(z) will be replaced by the 
more extensive one that g(z) assume any value in a given 
angular domain with an opening of less than ir radians. The 
point a will then be free to lie in a region which includes at least 
the convex region of Weierstrass' theorem. This larger region 
will be determined in §2 and shown to be a "best approxima
tion" to the position of a. 

The other theorem to be considered is one due to Fekete.§ 
If a polynomial P(z) of degree n takes on at z — k\ and z = k2 the 
unequal values r\ and r2f then it takes on every value of the line-

* Presented to the Society, December 30, 1931. 
t This Bulletin, vol. 35 (1929), pp. 363-370, and Transactions of this So

ciety, vol. 32 (1930), pp. 658-668, and vol. 33 (1931), pp. 934-944. 
t See Osgood, Lehrbuch der Funktionentheorie, 1923, vol. I, p. 212. 
§ M. Fekete, Acta Universitatis Hungaricae, vol. 1 (1923), pp. 98-100. 

Also Pólya-Szegö, Aufgaben una Lehrsatze, vol. I, p. 257. 
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segment r^ at least once within or on a circle with center at z 
= (&i+&2)/2 and with a radius %\ki — k%\ ctn (ir/iln)). 

This theorem has been extended by J. v. Sz. Nagy* as fol
lows: If P(z) is a polynomial of degree n, if P(kj)=r3-, (j = l, 
2, • • • , m), and if K and R are the smallest convex polygons en-
closing the points kj and r3, respectively, then P{z) takes on any 
value cr in R at least once within the smallest circle from whose 
circumference K subtends an angle 0 g ir/n. 

An equivalent way of expressing Nagy's theorem is that if 
P(z) is a polynomial of degree n, if h\, k%, • • • , km are points of 
a convex region K, and if cc\, a2, • • • , am are positive real num
bers, then P(z) assumes the value a, where 

m m 

at least once in the smallest circle from whose circumference K 
subtends an angle 0 S Wn-

In §3, the above hypothesis on the a}- will be replaced by the 
less restrictive one that the OLJ all lie in an angular domain with 
an opening not exceeding w. The region in which P(z) will at 
least once assume the value <r will necessarily be larger than 
that required under Fekete's or Nagy's assumptions. This 
larger region will be described in §3. Finally, §4 will be devoted 
to further discussion of Fekete's work. 

2. Weierstrass' Theorem. We may state our generalization of 
Weierstrass' theorem as follows. 

THEOREM 1. Given C:z = \l/(t), (aStSb),a rectifiable curve in 
the z-plane, F a convex region in the w-plane and G a region in the 
w-plane composed of the points lying in or on an angle with vertex 
at the origin and with a magnitude of y<T. Let S be the star-
shaped region] consisting of all points w at which F subtends an 
angle of not less than w — y. 

If f(z) an& g(z) are anJ two functions which on C are continu-
ous except f or a finite number of finite jumps and which on C as
sume only values within F and G respectively, then the point a as 
defined by the equation 

* Jahresbericht der Vereinigung, vol. 32 (1923), pp. 307-309. 
t See M. Marden, Transactions of this Society, vol. 32 (1930), pp. 658-9. 
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(1) f f{t)g{t)dt = <r f g{t)dt 
Ja Ja 

lies in 2 . Conversely', if a is any point of 2 , functions f(z) and 
g(z) fulfilling the above conditions can be found so that equation 
(1) is satisfied. 

In demonstrating this theorem, we may suppose that G is 
denned by the inequality 

0 < arg w S 7 . 

No loss of generality ensues since multiplication of equation (1) 
by eie does not affect the value of <r. 

To prove the first part of the theorem, let us assume that a 
lies outside of S. This means that for all points z on C, the vector 
f(z)—(i lies within an angle of magnitude less than 7r —7. That 
is to say, there exists a positive real number S such that for 
all z on C 

0 rg arg [ƒ(*) - a] - Ô < ir - y; 

0 ^ arg g(z)[/(s) -< r ] - 5 < TT. 

Hence 

J a 

in contradiction to the fact that <r satisfies equation (1). Con
sequently, the point a must lie in S. 

To prove the second part of the theorem, let us suppose v to 
be any point of S. Then a does or does not also lie in F. If cr 
lies in F, we need only choose ƒ(z) —a and g(z) = 1. For then we 
shall have 

g(t)[f{t) - v]dt = (b-a)(<r-a) = 0 . 

If a does not lie in F, the angle subtended at a by F will be 
7T —7', where 0 ^ 7 ' ^ 7 . That is to say, there exist in F two 
points a and /3, such that 

arg — T — 7 . 
a — a 

. 
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Now we have but to make 

1/3 — cr I 
g(*)=-! L, ƒ(*) = *, ( « ^ ^ ) , 

c — a 

g(z) = i ^ î L *<*', ƒ(*) = /3, ( ^ ^ J), 

for then 

b 

g(t) [fit) - a]dt = | p- cr | (a - cr) + | a - a | (/5 - <r)e*V. 

The right-hand side of this expression is zero since 

1/5 — cr j £ - < r 
« - ^ . 

| a — cr j a: — a 
In Theorem 1, thus proved, it is to be noted that, when y 

approaches zero, region 2 approaches F\ that is, our theorem 
reduces essentially to Weierstrass' ; and that, when y approaches 
7T, region 2 expands indefinitely; that is, the magnitude of the 
angular domain G cannot be enlarged beyond w without vitally 
changing the theorem. 

Two corollaries may be deduced at once from Theorem 1. 

COROLLARY 1. If f(z) and F(z) are continuous (except f or a 
finite number of finite jumps) on a curve C:z = \//(t), (a<t^b), and 
if on C 

0 g arg f (z) ^ 7 < w, 

there exists a number cr, | cr| g sec (7/2), such that 

f ${z)F{z)dz = v f t(z)\F(z)\ds. 
J t=a *) t—a 

For let us set in Theorem 1 

dz , , 
ƒ(*) = e****u—, g(z) =f (*) F (s ) | . 

ds 

Since \f(z) | = 1, it follows that |cr | ^sec (7/2). 

COROLLARY 2. Under the same conditions as in Corollary 1, 
if I F(z) J ̂ M on C,a number a, \a\ S M sec (7/2), exists such that 

L 
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f t(z)F(z)dz ?(z)ds. 

For, let us choose 
dz 

ƒ(*) = *"(*) - and g(z) 
ds roo-

Then, since | /(s) | ^ Af, we have |<r| ^ Af sec (7/2). 
These two corollaries lead to the following inequalities : 

f\(z)F(z)dz 

f Ç(z)F(z)dz 

ë- sec-

^ M sec-

f ï(z)F(z)d. 
J a 

y I ch 

Je \ J a 

The last inequality is an extension of the Darboux* theorem 
that, if f (z) is real and positive on C and £ a suitable point on C, 

I f M)P(t)dt\£\F(&\ f ïWt. 
I •/ a I « / a 

3. Fekete's Theorem. Our generalization of Fekete's Theorem 
and of its extension by Nagy may be put in the following terms. 

THEOREM 2A. Given the positive integer n, the convex region K 
and the angular domain A with vertex at the origin and with a 
magnitude of y<w. Let S be the star-shaped region consisting of 
all points at which K subtends an angle of not less than (x — y)/n. 

If P{z) is any polynomial of degree n and if k3- and aj (j = l, 
2, • • • , m) are any points of K and A respectively, then P{z) 
assumes the value <r, where 

(2) 
7 - 1 j - 1 

at least once in 5. Conversely, if s is any point of S, there exists a 
polynomial P(z) of degree n which for a suitable choice of points 
kj and dj in K and A will satisfy the relation 

(3) P(s) £«,- = 5>,P(*y). 
j - 1 j - 1 

* Osgood, Lehrbuch der Funktionentheorie, p. 213. 
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In the proof of this theorem we may suppose without loss of 
generality that region A is defined by the inequality 

0 ^ arg s ^ 7 < 7T. 

Let us write 

P(z) - a = C{z - zi)(z — z2) - • • 0 - zn). 

If all the Zj were outside of 5, the rays from any one z3- to all 
the ki would lie within an angle of less than (T — y)/n. That is 
to say, a constant 8/ would exist such that for all i 

7T — 7 
0 S arg (ki — Zj) — ôj < ; 

n 
m 

0 ^ arg [P(ki) - er] - arg C - £ « / < ^ ~ 7, 

m 

0 ^ arg a*[P(&*) — <r] — arg C — ]£X' < 7r, 

and hence 
m 

2>i[P(*<) - <r] ^ 0, 
t=i 

in contradiction to the hypothesis that (2) is satisfied. Conse
quently, P(z) assumes the value a at least once in S. 

To prove the converse proposition, let us choose any point 5 
in S. Point s is or is not also in K. If it is in K, we may choose 
m = l, ai = l, and ki — s, thus satisfying relation (3). If it is not 
in K, the angle subtended by K at 5 has a value {j — y')ln, 
where 0 < 7 ' ^ 7 . That is to say, there exist in K two points 
ki and k2 such that 

k2 — s ir — y' 
arg = 

ki — s n 
Let us now set m = 2, 

on = | k2 - s\n, a2 = \h - s | V * ' , 

and 

P(s) =P0) + ( s - *)n. 
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Then 

ai[P(Éi) - P(s)] + a2[P(h) - P(s)] 

= \ k2 - S | n ( * i ~ S)n + | Éi - S \n(k2 - s ) V * ' . 

By using the definition of 7', it is obvious that the right-hand 
side is zero. 

It is to be noticed first that, if K is specialized to be a circle 
whose radius is r, 2 becomes a concentric circle S whose radius 
is f esc [Or —7)/(2«)]. 

Secondly, when 7 = 0, our theorem provides an approximation 
to one root of P{z) — a = 0 which in general is better than Nagy's, 
coinciding with his only when K is a circle. 

Finally, inasmuch as the results in Theorem 2A do not de
pend upon m, we may state the following theorem. 

THEOREM 2B. Let P{z) bean arbitrary polynomial of degree n 
and C:z = \f/(t), (a^t^b),a rectifiable curve drawn within a given 
convex region K. On C let a(z) be continuous and assume only 
values within an angular domain whose vertex is at the origin and 
whose magnitude is 7<7r. Then the star-shaped region S con
sisting of all points at which K subtends an angle of not less than 
(w — y)/n contains at least one point s such that 

J» & /% & 

P{t)a{t)dt = P{s) I a(fidt. 
a *) a 

4. Addenda. As Professor Fekete has kindly pointed out to 
me, he has already proved Theorem 2A (an analog to Bolzano's 
theorem) for m = 2.* 

Since faa(z)dt9é0 in Theorem 2B, it follows that, if 
faP(z)a(z)dt = 0, P(z) vanishes at least once in S. For 7 = 0, this 
result coincides with one due to Fekete.* For a{z) = 1 , \p(t) =t 
and P(z)=Qr(z) where Q(z) is any polynomial of degree n) it 
yields an analog to Rolle's theorem also due to Fekete.f 

Through a chain of arguments similar to those employed in 
proving Theorems 2A and 2B, we may establish the following 
more general theorem. 

* Mathematische Zeitschrift, vol. 22 (1925), p. 2, and Jahresbericht der 
Vereinigung, vol. 34 (1926), p. 221. 

t Mathematische Zeitschrift, vol. 22 (1925), p. 4. 



*932>] MEAN-VALUE THEOREMS 441 

THEOREM 3. Given two positive integers p and q, a convex region 
K and an angular domain A with vertex at the origin and with a 
magnitude of y<T. Let S be the star-shaped region consisting of 
all the points from which K subtends an angle of not less than 
(TT— y)/(m+q), where m = max (p, q). Let C: z = \f/(t), (a^t^b), 
be a rectifiable curve drawn in K, and let a(z) be a function which is 
continuous on C and which assumes on C only values in A. Finally, 
let P{z) and Q(z) be any two polynomials of degrees p and q respec
tively such that R(z) =P{z)/Q{z) is irreducible and has no poles in 
S. Then in S there exists at least one point s such that 

faR(z)a(z)dt=R(s)faa(z)dt. 

Theorem 3 reduces essentially to one due to Fekete* for 

f(t)^kh a^t^(a+b); ^(/)s*2f l(a+b)<t£b. 

UNIVERSITY OF WISCONSIN, M I L W A U K E E 

* The above Acta article, p. 236. 


