NOTE ON THE LAW OF BIQUADRATIC RECIPROCITY*

BY V. W. ADKISSON

In outlining the proof of the law of biquadratic reciprocity H. J. S. Smith develops the expressions for S, T, S^{4}, and $T^{4} \dagger$ which are used in the proof given by Eisenstein. \ddagger We give here a slightly different development for these values making use of certain relationships established by Lebesgue.§ The advantage in this development lies in the fact that the function $\psi(i)$ is exhibited in a form which shows it to be a polynomial in i with integral coefficients, and that $\pm \psi(i)$ is a primary prime in the realm $k(i)$ if the proper sign be chosen. If

$$
F(\alpha)=\sum_{n=0}^{p-2} \alpha^{n} x^{g^{n}}
$$

where α is a root of the equation $\left(\alpha^{p-1}-1\right) /(\alpha-1)=0, x$ is a root of $\left(x^{p}-1\right) /(x-1)=0, g$ is a primitive root of p, and p is a prime of the form $4 n+1$, then

$$
\begin{equation*}
F(\alpha) F\left(\alpha^{-1}\right)=\alpha^{(p-1) / 2} p \tag{1}
\end{equation*}
$$

Substituting i for α, we obtain the result

$$
\begin{equation*}
F(i) F(i)=F(-1) \sum_{t=1}^{p-2} i^{\operatorname{ind} t}(-1)^{\operatorname{ind}(t+1)} \cdot \| \tag{2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\psi(i)=\frac{[F(i)]^{2}}{F(-1)}=\sum_{t=1}^{p-2} i^{\operatorname{ind} t(-1)^{\operatorname{ind}(t+1)} .} \tag{3}
\end{equation*}
$$

Hence, $\psi(i)$ is a polynomial in i with integral coefficients, and may be written in the form $a+b i$ where a and b are integers. But

[^0]\[

$$
\begin{equation*}
\psi(i) \psi(-i)=\frac{[F(i) F(-i)]^{2}}{[F(-1)]^{2}}=\frac{\left[i^{(p-1) / 2} p\right]^{2}}{(-1)^{(p-1) / 2} p}=p . \tag{4}
\end{equation*}
$$

\]

Therefore, $\psi(i)$ and $\psi(-i)$ are primes in $k(i)$. Since there are an even number of terms in (3) for which ind t is odd, and an odd number of terms for which ind t is even, $\pm \psi(i)$ and $\pm \psi(-i)$ will be primary primes, $a+b i$ and $a-b i$ respectively, in $k(i)$ if the proper signs be taken in each case. Moreover, $\psi(-i)$ [or $-\omega(-i)$] is primary if $\psi(i)$ [or $-\psi(i)$] is primary, and hence $(a+b i)(a-b i)=p$.

Since g is a primitive root of p, we have

$$
g^{(p-1) / 2} \equiv-1, \bmod p ; \quad g^{(p-1) / 4} \equiv i, \quad \bmod p_{1}
$$

and

$$
g^{(p-1) / 4} \equiv-i, \bmod p_{2},
$$

where $p_{1} p_{2}=p$. Then $\left(g / p_{1}\right)_{4}=i$.*
Let $g^{s} \equiv k \bmod p$; then since

$$
F(i)=\sum_{s=0}^{p-2} i^{s} x^{g^{s}},
$$

we find

$$
F(i)=\sum_{s=0}^{p-2}\left(\frac{g^{s}}{p_{1}}\right)_{4} x^{g^{s}}=\sum_{k=1}^{p-1}\left(\frac{k}{p_{1}}\right)_{4} x^{k}=S .
$$

From (3) and (4),

$$
[F(i)]^{4}=[F(-1)]^{2}[\psi(i)]^{2}=p(a+b i)^{2}=p p_{1}^{2}=S^{4} .
$$

In like manner

$$
F(-i)=\sum_{k=1}^{p-1}\left(\frac{k}{p_{1}}\right)_{4}^{3} x^{k}=T
$$

and

$$
T^{4}=p(a-b i)^{2}=p p_{2}{ }^{2} .
$$

University of Arkansas

[^1]
[^0]: * Research paper No. 280, University of Arkansas.
 \dagger H. J. S. Smith, Collected Mathematical Papers, vol. 1, pp. 78-87.
 \ddagger E. Eisenstein, Lois de réciprocité, Journal für Mathematik (Crelle), vol. 28, pp. 57-67.
 § L. M. V.-A. Lebesgue, Démonstration de quelques formules d'un mémoire de M. Jacobi, Journal de Mathématiques (Liouville), vol. 19, pp. 289.
 $\|$ Lebesgue, loc. cit.

[^1]: * The symbol $\left(g / p_{1}\right)_{4}$ due to H. J. S. Smith is the power of i which is congruent to $g^{(p-1) / 4} \bmod p_{1}$.

