NOTE ON A THEOREM DUE TO BROMWICH

BY H. L. GARABEDIAN

The following well known theorem is due to Bromwich.*
Theorem. Suppose (i) that the series $\sum a_{n}$ is summable by Cesàro means of order k to the sum s, (ii) that v_{n} is a function of x with the properties

$$
\left.\begin{array}{l}
\sum_{\lim _{n \rightarrow \infty}} n^{k}\left|\Delta^{k+1} v_{n}\right|<K \dagger \\
v_{n}
\end{array}\right\} \quad \text { if } \quad x>0
$$

$$
\lim _{x \rightarrow 0} v_{n}=1
$$

where K is independent of x and n. Then the series $\sum a_{n} v_{n}$ converges if x is positive, and

$$
\lim _{x \rightarrow 0} \sum a_{n} v_{n}=s
$$

I propose to establish this theorem by a more direct and shorter method than that used by Bromwich. Moreover, this proof affords a method of exhibiting a k-fold summability with infinite matrix of reference, analogous to well known definitions of summability with finite matrices of reference which make use of repeated means, for any v_{n} which satisfies the conditions of the theorem under discussion.

By hypothesis the series $\sum a_{n}$ is summable by Cesàro means of order k, so that if

$$
S_{n}^{(k)}=\binom{n+k-1}{k-1} s_{0}+\binom{n+k-2}{k-1} s_{1}+\cdots+\binom{k-1}{k-1} s_{n}
$$

and

$$
A_{n}^{(k)}=\binom{n+k}{k}
$$

[^0]then
$$
C_{n}^{(k)}=\frac{S_{n}^{(k)}}{A_{n}^{(k)}}
$$
has a definite limit s as n tends to ∞. We may also define $S_{n}{ }^{(k)}$ by means of the identities
$$
\sum S_{n}^{(k)} x^{n}=(1-x)^{-k} \sum s_{n} x^{n}=(1-x)^{-(k+1)} \sum a_{n} x^{n}
$$
from which it follows that
$$
\sum s_{n} x^{n}=(1-x)^{k} \sum S_{n}^{(k)} x^{n}
$$
and
$$
\sum a_{n} x^{n}=(1-x)^{k+1} \sum S_{n}^{(k)} x^{n} .
$$

It results at once from the last identity that

$$
\begin{align*}
a_{n}= & S_{n}^{(k)}-\binom{k+1}{1} S_{n-1}^{(k)}+\binom{k+1}{2} S_{n-2}^{(k)}-\cdots \\
& +(-1)^{k+1}\binom{k+1}{k+1} S_{n-k-1}^{(k)}, \tag{1}
\end{align*}
$$

where it is understood that when a negative subscript occurs in the formula, the corresponding $S^{(k)}$ is to be replaced by zero.

Now, we form the series

$$
F(x)=\sum_{n=0}^{\infty} a_{n} v_{n}(x)
$$

or, using (1),
(2) $F(x)=\sum_{n=0}^{\infty}\left[S_{n}^{(k)}-\binom{k+1}{1} S_{n-1}^{(k)}+\binom{k+1}{2} S_{n-2}^{(k)}-\cdots\right.$

$$
\left.+(-1)^{k+1}\binom{k+1}{k+1} S_{n-k-1}^{(k)}\right] v_{n}(x) .
$$

We are justified by the conditions (ii) in ordering the terms of (2) with respect to $S_{n}{ }^{(k)}$ to get

$$
\begin{aligned}
F(x)= & \sum_{n=0}^{\infty} S_{n}^{(k)}\left[v_{n}(x)-\binom{k+1}{1} v_{n+1}(x)+\cdots\right. \\
& \left.+(-1)^{r}\binom{k+1}{r} v_{n+r}(x)+\cdots+(-1)^{k+1} v_{n+k+1}(x)\right]
\end{aligned}
$$

or

$$
\begin{equation*}
F(x)=\sum_{n=0}^{\infty}\binom{n+k}{k} \Delta^{k+1} v_{n}(x) C_{n}^{(k)} \tag{3}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty} C_{n}{ }^{(k)}=s$, it remains to show that the method of summation with infinite matrix of reference defined by (3) is regular, ${ }^{*}$ which is to say that $\lim _{x \rightarrow 0} F(x)=s$. Accordingly, we must require in the present case that
(a)

$$
\lim _{x \rightarrow 0}\binom{n+k}{k} \Delta^{k+1} v_{n}(x)=0 \text { for every } n
$$

$$
\begin{equation*}
\lim _{x \rightarrow 0} \sum_{n=0}^{\infty}\binom{n+k}{k} \Delta^{k+1} v_{n}(x)=1 \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=0}^{\infty}\binom{n+k}{k}\left|\Delta^{k+1} v_{n}(x)\right|<K \tag{c}
\end{equation*}
$$

for every $x>0, K$ independent of x.
It follows from condition (α) of the hypotheses that

$$
\lim _{x \rightarrow 0}\binom{n+k}{k} \Delta^{k+1} v_{n}(x)=\binom{n+k}{k} \Delta^{k+1} 1=0
$$

Accordingly, the requirement (a) is satisfied.
Now, we need the identity

$$
\begin{gather*}
\sum_{n=0}^{n}\binom{n+k}{k} \Delta^{k+1} v_{n}(x)=v_{k}(x)+\sum_{\nu=0}^{k-1} \frac{k!}{(k-\nu)!\nu!} \Delta^{k-v_{v_{\nu}}}(x) \\
-\sum_{\nu=0}^{k} \frac{(n+k-\nu)!}{(k-\nu)!n!} \Delta^{k-\nu} v_{n+1}(x) \cdot \dagger \tag{4}
\end{gather*}
$$

[^1]As n tends to infinity every term involving n on the right-hand side of (4) tends to zero by virtue of condition (β) of the hypotheses. It follows that

$$
\begin{equation*}
\sum_{n=0}^{\infty}\binom{n+k}{k} \Delta^{k+1} v_{n}(x)=v_{k}(x)+\sum_{\nu=0}^{k-1} \frac{k!}{(k-\nu)!\nu!} \Delta^{k-\nu} v_{\nu}(x) \tag{5}
\end{equation*}
$$

Moreover, by virtue of condition (α),

$$
\begin{equation*}
\lim _{x \rightarrow 0} \sum_{\nu=0}^{k-1} \frac{k!}{(k-\nu)!\nu!} \Delta^{k-\nu} v_{\nu}(x)=0 \tag{6}
\end{equation*}
$$

Accordingly, from (5), (6), and (α) we have

$$
\lim _{x \rightarrow 0} \sum_{n=0}^{\infty}\binom{n+k}{k} \Delta^{k+1} v_{n}(x)=\lim _{x \rightarrow 0} v_{k}(x)=1
$$

and the requirement (b) is fulfilled.
Finally, we note that the expression

$$
\sum_{n=0}^{\infty}\binom{n+k}{k}\left|\Delta^{k+1} v_{n}(x)\right|
$$

will be uniformly bounded or fail to be uniformly bounded according as the expression $\sum_{n=0}^{\infty} n_{k}\left|\Delta^{k+1} v_{n}(x)\right|$ is uniformly bounded or fails to be uniformly bounded. It is understood in this statement that x is restricted to positive values. Hence, by condition (γ), the last of the requirements (c) for regularity is satisfied.

We conclude that

$$
\lim _{x \rightarrow 0} F(x)=\lim _{x \rightarrow 0} \sum_{n=0}^{\infty}\binom{n+k}{k} \Delta^{k+1} v_{n}(x) C_{n}^{(k)}=s
$$

We exhibit in the function

$$
\phi(n, x)=\binom{n+k}{k} \Delta^{k+1} v_{n}(x)
$$

a convergence factor which, associated with a method of summation with infinite matrix of reference, affords a method of constructing a k-fold method of summability with infinite matrix of reference for any $v_{n}(x)$ which satisfies the conditions of Bromwich's theorem. Examples of functions $v_{n}(x)$ which satisfy these requirements* are the LeRoy convergence factor:

[^2]$$
v_{n}(x)=\frac{\Gamma[(1-x) n+1]}{\Gamma(1+n)}
$$
the Mittag-Leffler convergence factor:
$$
v_{n}(x)=\frac{1}{\Gamma(1+n x)}
$$
and the Dirichlet series convergence factors:
$$
v_{n}(x)=e^{-\lambda(n) x},
$$
where $\lambda(n)$ must be a logarithmico-exponential function of n which tends to infinity with n but not as slowly as $\log n$ nor faster than n^{Δ}, where Δ is any constant however large.

Northwestern University

A THEOREM ON SYMMETRIC DETERMINANTS

BY W. V. PARKER

1. Introduction. In a recent paper* the writer proved the following theorem.

If $D=\left|a_{i j}\right|$ is a real symmetric determinant of order $n, n>5$, in which $a_{i i}=0,(i=1,2, \cdots, n)$, and M is any principal minor of D of order $n-1$, then if all fourth order principal minors of M are zero, D vanishes.

The purpose of the present note is to establish a second theorem of a similar nature which applies to complex as well as to real determinants. It will be shown also that when $a_{i j},(i \neq j)$, $(i, j=1,2, \cdots, n)$, is real and different from zero the conditions of this second theorem imply those of the above.
2. A Second Theorem. The theorem with which this note is concerned may be stated as follows.

Theorem. If $D=\left|a_{i j}\right|$ is a symmetric determinant of order n, $n>5$, in which $a_{i i}=0,(i=1,2, \cdots, n)$, and M is any principal minor of D or order $n-1$, then if all fourth order principal minors of D, which are not minors of M, are zero, D vanishes.

[^3]
[^0]: * Mathematische Annalen, vol. 65 (1907-08), pp. 350-369; p. 359.
 \dagger Since all of the terms in the series $\sum n^{k}\left|\Delta^{k+1} v_{n}\right|$ are positive, this condition implies the convergence of the series.

[^1]: * See Carmichael, The theory of summable series, this Bulletin, vol. 25 (191819), pp. 97-131; p. 117.
 \dagger See H. L. Garabedian, Annals of Mathematics, vol. 32 (1930), pp. 83-106; p. 91 .

[^2]: * H. L. Garabedian, loc. cit.

[^3]: * This Bulletin, vol. 38 (1932), p. 259.

