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ON T H E TRIGONOMETRIC DEVELOPMENTS OF CER
TAIN DOUBLY PERIODIC FUNCTIONS OF T H E 

SECOND KIND* 

BY M. A. BASOCO 

1. Introduction. The class of meromorphic functions which 
satisfy periodicity relations of the form 

(1) ƒ(* + 2Wl) = Clf(z), f(z + 2co2) = af{z), 

where the multipliers d and c2 are independent of z, and coi/co2 is 
a complex number with non-vanishing imaginary part, has been 
named by Hermitef doubly periodic of the second kind. It is 
possible to make the study of these functions depend on others 
of the same type, but such that one of the multipliers, say Ci, is 
unity. In what follows we shall assume, further, that the periods 
(2coi, 2co2) are (x, TTT), where r = a-\-ib, b>0. 

Particular interest is attached to the functions (2) below, 
which belong to the category just defined. In terms of the Jacobi 
theta functions they have the form 

&a(x + y) 
(2) <t>afly(x, y) = tV —7-7-7T ' 

where x, y are independent complex variables, and a, /3, 7 are 
certain triads, sixteen in number, which can be selected from the 
numbers 0, 1, 2, 3. These functions were first discovered by Ja
cobi J and have been studied by Kronecker§, Hermitell, Tei-
xeira^f and others. More recently, E. T. Bell** has pointed out 
their importance in connection with certain results in number 

* Presented to the Society, April 8, 1932. 
f Hermite, Comptes Rendus, vol. 85 (1877), . . . vol. 94 (1882); Annales de 

l'École Normale Supérieure, (3), vol. 2, 1885, p. 303. Oeuvres, vol. IV, p. 
190-200. 

t Jacobi, Werke, vol. 2, pp. 291-351. 
§ Kronecker, Monatsberichte der Berliner Akademie, 1881, pp. 1165-1172; 

Werke, vol. IV, pp. 309, 318. 
H Loc. cit.; see also Lerch, Acta Mathematica, vol. 12 (1889), pp. 51-55. 
H Teixeira, Journal für Mathematik, vol. 125 (1901), pp. 301-318. 

** E. T. Bell, Transactions of this Society, vol. 22 (1921); Colloquium 
Series of this Society, vol. 7, p. 88. Giornale di Matematiche, vol. 59 (1921). 
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theory; in these arithmetical applications, their explicit Fourier 
expansions play a fundamental rôle. 

In what follows, we shall be primarily concerned with deriving 
the Fourier developments for the squares of the (j>a^(ocy y). 
However, our analysis is perfectly general and the expansion for 
any positive integral power of these functions may be calculated 
if desired. It is on account of the possible arithmetic applications 
that we have carried out the calculations for the squares; these 
expansions turn out to have a relatively simple structure, while 
the higher powers are of a far greater complexity and hence may 
not yield simple and interesting arithmetic results. 

The analysis used originates with Teixeira (loc. cit.) ; however, 
for our purpose, it was necessary to generalize somewhat certain 
of his results, as we proceed to indicate. 

2. Extension of Teixeira's Results. Let f(z) be a doubly periodic 
function of the second kind with periods equal to w and 7rr, the 
corresponding multipliers being unity and c, respectively, where 
c is independent of z. Suppose that in a fundamental period cell 
f(z) has k poles, z = ar, r = 1, 2, 3, • • • , k. Further, let the order 
of these poles be mr respectively, so that in the neighborhood of 
z = ar,f(z) has the Laurent expansion 

Amr A2 Ax 

(3) ƒ(*) = '— + • • • + + + P(z ~ *) . 
(z — ar)

mr {z — ar)
z z — ar 

Consider a parallelogram pqrs consisting of /3 + 1 cells above 
the real axis and a below. Inside this parallelogram, f(z) has 
a+/3 + l poles which have the affixes 
(4) z — ar + nwr = cor,n, 

0 = 1, 2, 3 • • • k; n=-a + l, • • • , - 1 , 0, 1, 2, • • • , /3). The 
corresponding residues are cnA\{r). 

Next, consider the auxiliary function given by 

(5) <t>{t) = -TT~V /W = * [ ! - * ctn (t - z) ]ƒ(/). 
pill pliz 

If we apply Cauchy's theorem to the contour integral J^o<t>{t)dt 
the contour C being the boundary of the parallelogram pqrs, we 
obtain, after certain reductions* which we shall omit, the follow-

* For more details on the nature of these reductions we refer the reader to 
some analogous calculations which are indicated in a paper by the writer in 
this Bulletin, vol. 37 (1931), pp. 117-124. 
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ing result which is valid in a strip parallel to the axis of reals 
and bounded by lines of which rq and sp are segments : 

(6) 

where 

ƒ(*) = HCme2mi* - i 2 > i r ) A l + i ctn (2 - wr,n)) 
m——oo ( r , n ) 

mr— 1 /j 
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+ 2^ 2^ C D"r,n Ct l1 (* ~ ^,n) , 
(r ,n) s = l <J • 

(r) 

(7) 

^ m 

? 

c_m 

Co 

= 

= 

= 

= 

c-aq2i 

1 — cq" 

eTiT, 

1 -

2ic~a 

T- c 

not mr k ( _ 

— E E -

m (1+0) wir A; 

— £ Ê 
C 0 2 w *=1 r - l 

fc (r) 

r = l 

- 1)'(2< 

( * -

(2i)sms 

)sms-

w 
-Ms 

(m = 

1)! 

( f ) 

- e-2m 

1,2, 

miar 

%ar 

) 

3, ), 

and .D(s) is the differential operator of order s, and cor,n is the ar
gument ar-\-mrr which is to be substituted after the differentia
tion has been performed. 

3. Application to the Functions &apy(z, v). We shall use the no
tation $apy(z, v) to denote the squares of the 4>a^y(z, v) defined by-
equation (2). These separate into two groups (A) and (B) ac
cording as their poles, qua functions of z, are congruent to 
7rr/2 or 7TT. They all come under the case where k = 1 and mT = 2, 
(that is, there is but one pole z = a in a period cell and its order is 
two). With these values and also with (OJ,J8) equal to (0, 0) our 
fundamental formula (6) reduces to the following : 

r~ °° e2ni(z-a) °° Cg2ne—2ni(z-a)-l 

p2ni(z— a) °° ^QQ2n^—2ni(z—a)~ 

(8) 
F yiçïniiz— a) °° flÇQ^ne~ %ni(,z— a)~\ 

2L h \~cq-^ h 1 - cq*n J 
— iA i(l + i ctn (z — a)) + A2 esc 2(z — a). 

We shall now transform this expression into a form suitable 
for the calculation of the arithmetical expansions of the func
tions in group (A). To do this, use is made of the relationships 
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(9) 

1 + i ctn (z - a) = 2 J2e2ni(z~a), 

00 

esc2 (z — a) = — 4 ^2ne2ni^-a\ 

which are valid provided I(z)>I(a). Furthermore, as may be 
seen from the properties of the theta functions, the $a(3y(z, v) as 
functions of z have the multipliers unity and c = e~Uv. 

Substituting these values in (8) we find, after some reduction, 

(10) f(z) = AiKz, v, a) + A2Da^(z, v, a), 
00

 e2ni(z—a~wT/2) 

(11) iKz, v, a) = e~2iv y 
n——oo sin (2z> + mrr) 

In order to obtain an expansion suitable for use in connection 
with the functions of group (B), all that is necessary is to rewrite 
(8) in the form 

(12) ƒ(*) = Aj(z, v, a) + A2D
(
a
i\(z) v, a), 

00 (jnp2ni(z—a) 

f (z, Ï>, a) = ctn (z - a) + ctn 2v + e2iv J^ • • • 
n=i sin (2v + nirr) 

(13) 

+ e~2" X) 
rjnp— 2ni(z— a) 

=i sin (2fl — nirr) 

4. jTAe Expansions in Group (A). Consider the function 

<V(s +10 
(14) /(z) = <ï>ooi(^) =#{* 

h*(zW(v) 

its periods are w and 7rr with multipliers unity and e~Uv respec
tively. We may select the fundamental period cell so that a 
= — TTT/2 is the affix of the pole to be used in (10). Further, a 
slight calculation shows that the coefficients Ai and A2 of the 
principal part of its Laurent expansion about z — —TTT/2 have 
the values Al = 2e2ivêi' (y) /ûi(v) and A2 = e2iv. Equations (10) 
and (11) then yield the result 
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3>ooi(z, v) = &{ 

(15) 
00 

- 2 * 2 : -

E~ 
2ê{ (v) 

&i(v) n=-oo sin (2v + nirr) 

ne* 
sin (2v + nirr) 

In order to reduce this expression to arithmetical form, we use 
the following relations, which may easily be proved : 

(16) esc (2v + nirr) = — 2i ^qnme2iml 

oo 

(17) esc (2v — MTT) = 2% y^Jq
nme-<lirnv. 

(m = 1, 3, 5, 7, • • • ), 

These hold simultaneously and for all positive integral n in case 
^I(7rr)<I(v)<^I(Trr). The expansions sought will be readily 
obtained from (15) if each sum is replaced by two others in 
which the indices of summation range from n = l to n - °°, 
if we pair off corresponding terms and make use of (16) and 
(17). Thus we obtain, on changing our notation (z, v) to (x, y) in 
order to be in agreement with current use, the development 

*ooi(^, y) = # / — — = 
W(xW(y) Uy) Lsin2 

(I) 

&o\x)&i2(y) ôriy) L sin 2 y 

+ 4 Z ? n ( Z sin 2{tx + ry)) 

~ 8 2 > » ( £ * c o s 2 ( t e + ry)), 

in which the summation appearing as the coefficient of qn is to 
be extended over all the positive integral divisors t, r of n, 
T being always odd. 

Replacing (x, y) successively by (x, y+7r/2), (x+w/2, y), 
(X+T/2), (y+w/2) in the preceding, we obtain the following: 

(n) * 3 0 2 ( * , y) = &{'• 
W(x + y) 

= - 2 
êi(y) 1 

.sin 2y do2(xW(y) My) 

+ 4 Z ? n ( Z s i n 2(tx + ry)) 

+ § & ( Z< cos 2(tx + ry)) ; 
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>#iM["- i 

M{x)êx\y) My) Lsin 2y 

+ 4 E ( ~ !)"?"( E sin 2(te + ry))J 

- 8 E ( - l)"î"( E< cos 2(** + ry)) ; 

(IV) 

* , > > , „ #o2(*+y) /2 '(y) 
$032(a; , y ) = t ? i 2 = — 2 

« W « W My) 

• l 

.sin 2v 

+ 4 X X - l)"g"( E sin 2(te + ry)) 

+ 8 E ( - !)"?"( Z ' cos 2{tx + ry)) 

In an entirely similar manner, we may derive from 

M(z + v) 
/(a) = $100(2, v) = ai 

the following developments: 

«?o2 (z)M (v) 

(V) 

*ioo(^, y) = #i = 2 
ê<?(xW(y) My) Lsin2y 

+ 4 E ? n ( E sin 2(*« + ry)) 

- 8 E ? " ( E ' cos 2(*x + ry)) ; 

(VI) 

$203(x, y) 
Lsm i 

(VII) 

„ M(x + y) = ^ / ( y ) 

ô<?(x)ât(y) " My) Lsin2y 

+ 4 E ? " ( E sin 2(/* + Ty))~| 

+ 8 E ? " ( E * cos 2{tx + ry)) ; 

#2
2(* + y) #<,'(}') T 1 

*23o(x, y) = &{* — - = 2 M(xW(y) My) Lsin2y 

+ 4 E ( - l ) n ? " ( E s i n 2 ( / x + r y ) ) 

- 8 E ( - 1)"?"[ E< cos 2(<*+ ry)] ; 

(VIII) 

*133(«, 3») 
Q / t f i 2 ( * + y) tf/(y) IV-

Lsin2 
M(x)M(y) My) Lsin2y 

+ 4 E ( - !)"?"( E sin 2(/x + T y)) l 

+ 8 E ( - !)"?"( E ' cos 2{tx + ry)) . 
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5. The Expansion in Group (B). To obtain the Fourier series 
for the functions in this group we return to formulas (12) and 
(13). If the series (16) and (17) are used in connection with the 
expression defining the function f (s, v, a) we obtain the Fourier 
expansion for this function. Thus, 

(18) f (z, v, a) = ctn 2v + ctn {z - a) 

+ 4 l X X > n 2 ( < / ( s - a) + âv)) 

where the sum which appears as the coefficient of qn ranges over 
all divisors d, 8 of n such that 8 is even. We may note, in passing, 
that f(2, v, a) =0n i ( z — a, 2v). Consider, now, the function 

ƒ(«) s $ m ( 2 , v) = #i'2 #i2 (g + v) 

all that is necessary to obtain the development off(z) is to calcu
late the coefficients A1, A2 relative to the pole a = 0. We find that 
A2 = l and A1 = 2êl'(v)/ê1(v). Hence on applying (12) and (18) 
and changing, as before, the notation (z, v) to (x, y), we have 

(IX) 

#i2 (x + y) â{ (y) r 
<S>in(* y) = û{2 = 2 — c t n x + ctn 2y 

+ 4 & ( ] T s m 2 ( ^ + ô:y))] 

+ — 8 X > ( X > cos 2(dx + ô;y)). 
sin2 x 

From this, the following are deduced: 

(X) 

(XI) 

M(x + y) 0/OOr 
*22i(«, y) = t?i2 = 2 — t a n x + c t n 2 y 

+ 4 E f ( I ( - l)"sin2(d* + ôy))] 

+ — — -S^q"(J^(-l)ddcos2(dx+5y)); 
cos2 # 

#2
2 (* + y) t?2 ( ? ) , 

*2i2(x, y) = #2/2 = 2 Ictn x + ctn 2y 
êHxW(y) My) 

1 
+ • 

sin2 x 
8 £ « " ( ! > cos 2(rf* + 5y)) ; 
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<?x2(x+y) &i{y) 
= 2-
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[— tanx + ctn2y 

cos' x 

In an analogous manner, if we let 

f(z) = *„io(z, v) = ôl' 

we obtain the following: 

M(x)âi(y) ât(y) 

+ 4 I > ( E ( - 1)" sin 2{dx + By)) ] 

-\ ^ - 8 X ) r ( Z d ( - 1 ) < J c o s 2 ( d x + ô y ) ) . 

M (z + i>) 

M (z)<V (») 

(XIII) 

ê<?(x + y) 
*oio(«, y) = #{* — 

*o' (?) r = 2 ctn x + ctn 2y 
*o(y) 

+ 4 E ? " ( Z s i n 2 ( r f x + Ôy))] 

1 

+ 

(XIV) 

(XV) 

- &TqnŒd cos 2(dx + 5y)); 
sin' x 

t?8
2 (x + y) 0O' (y) r <ï,32o(x, y) = # i 2 = 2 — tan x + ctn 2 y 

M(xW(y) My) 

+ 4 E ? " ( Z ( - l)dsin2(ix + 5y))] 

+ 8E? n (Z ( - l ) ^cos2 ( r fx+ôy) ) ; 
COS2 X 

*«»(*, y) = #/2 —————• = 2—-—ctn x + ctn 2y 
^1

2(x)#3
2(y) My) 

+ 4 Z r ( Z s i n 2 ( r f x + 5y))] 

1 

+ 

(XVI) 

$023(*, y) = # / 

8 Z<T( Z r f c o s 2(<^ + 5y)) ; 

[— tanx + ctn2y 

sin' x 

M(x+y) êi(y) 

M(x)ûi(y) My) 
+ 4 E r ( Z ( - l ) " s i n 2 ( r f x + 5y))] 

1 

+ cos' x 
?E?"(Z(- 1 )^cos2(r fx+5y)) . 
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6. Conclusion. The developments obtained in what precedes 
contain terms which are multiplied by expressions of the form 
&<*'(y)/&<*(y)> the arithmetized trigonometric expansions for 
these are well known* and may be substituted in our develop
ments; when the multiplication and reduction are carried out the 
corresponding coefficient of the general power of q will then be a 
finite sum extended over the solutions of certain quaternary 
quadratic forms. 

It should, perhaps, be noticed that our series lead in one 
direction to the expansions for the squares of the Jacobian ellip
tic functions, while in another they give rise to several doubly 
periodic functions of the third kind. Thus, for example, if in 
expansion (I) we let y tend to the value w/2 we obtain the de
velopment for the square of the delta amplitude function : 

(19) <W#32 — — = + 8 2 > ( £ / cos 2tx), 
îVO) #2 

where 

ôi' _ q2n 

- = 1 + 8 £ 
#2 (1 + ?2n)2 

Again, if in (I) we put x=— y we get an expansion for 
&i'2#o2/(&o2(x)ei2(x)). If in (V) we put x = y and apply the trans
formation of the second order we obtain a development for 
$i'iïi(x)â2(x)dz(x)/$l(x). These examples suffice to indicate the 
possibilities in this direction. 

Finally, it should be noted that the methods here used will 
not yield the expansions for the remaining forty-eight &apy(x,y)-
These could be obtained in a slightly modified form by multiply
ing each of the sixteen functions given above by a suitable ellip
tic function such as (19) above, f 

T H E UNIVERSITY OF NEBRASKA 

* Bell, Messenger of Mathematics, vol. 54 (1924), p. 169. Reference should 
also be made to certain reduction formulas in his paper in the Giornale di 
Matematiche (loc. cit.). 

t In this connection we may refer to a Chicago thesis (1930) by D. A. F . 
Robinson, which is to appear in the Proceedings of the Royal Society of Canada. 
In this work, expansions for the forty-eight 4>apy(x, y) in modified form are 
given. The methods there used could, doubtless, be applied to obtain the re
maining &apy(%f y). 


