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ON T H E LEXIS THEORY AND T H E ANALYSIS OF 
VARIANCE* 

BY H. L. RIETZ 

In a paper f published in 1921 involving a generalization of 
the Lexis theory for the classification of statistical series with 
regard to their dispersion into Bernoulli, Lexis, and Poisson 
series, Coolidge based much of his reasoning on the following 
fundamental dispersion theorem. 

If n independent quantities yi, j % • • • , yn be given, their ex
pected values being ah a2, • • • , an, while the expected values of 
their squares are A i, A2, • • • , A n, respectively, and if we agree to 
set y = (1/n) 51 £=1 y%, a — (^/n) 5Z?=i #*> then the expected value 
of the variance ( l/w)]C?=i (y » ~ j)2 *s 

\ r fi \ n n - | 

(1) — Y,(Ai - *?) + 2 > ; - aY . 
n L n i=1 i^x J 

In setting up criteria for the practical classification of actual 
statistical series, Coolidge followed the customary procedure of 
introducing approximations by replacing (n — l)/n by 1. 

By avoiding this approximation in the present paper but 
otherwise proceeding along the lines followed by Coolidge, we 
shall arrive at certain important results of R. A. Fisher in his 
analysis of variance. The different estimates of variance used by 
R. A. Fisher seem to have been obtained largely by inferences 
based on the number of degrees of freedom of the variâtes rather 
than upon formal mathematical proofs. In fact, the intuitional 
element is so prominent in certain of these inferences based on 
the number of degrees of freedom that mathematicians rather 
generally hesitate to accept the results as mathematically es
tablished, although there is much general evidence in favor of 
the correctness of the conclusions. For this reason, it seems of 
interest to show how certain of the results in question can be 
derived by formal developments that follow closely the reason
ing of Coolidge in his generalization of the Lexis theory. 

* Presented to the Society, December 28, 1931. 
t This Bulletin, vol. 27 (1921), p. 439. 
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The Lexis theory is concerned with the examination of the 
inner structure of a population of items by the separation of 
items into subsets. As a simple mode of subdivision, suppose the 
set of independent items classified in some relevant manner into 
N sets of 5 items each. Then our observations may well be ex
hibited in columns and rows as 

(2) 

# 1 1 , # 1 2 , , # ls> X\* 

# 2 1 , # 2 2 , ' ' ' , 0028, X2. 

# i V l , # # 2 , ' ' ' , #iVs, XN-

X . ly X»2) y X-sy X 

with arithmetic means X{. of the ith row, x.j of the j t h column, 
and x of the whole sample of Ns items. 

To illustrate, take JV=17 and 5 = 15. Suppose that N=17 
years and that 5 = 15 refers to the first fifteen days of each year 
and that xa gives the mimimal temperature in degrees Fahren
heit at a certain place for the j t h day of the ith year. 

Using E{ ) for the expected value of the expression in the 
parenthesis, we let E(xij) =a»/, E(xa2) — Aij. Further, let 

s N N s 

X)ötj = sai) ^£2ai = Na; ^2,Xi. = Nx) ^x.j = sx. 
3=1 i=l *=1 ?'=1 

Then by (1) 

» (5 — 1) 8 2 S 

(3) E ^(xij — Xi.)2 = — ^{Aa - an) + J2(aa ~ ^ ) 2 -
3=1 $ j — \ j—l 

Summing (3) from i = 1 to N, we have 

N.s (s _ -n JV.S 

(4) E X (*« - Xi-Y = X iAa - au) 
i= 1, ƒ= 1 5 i = 1 ( ƒ— 1 

N.s 

+ 2 (^' — ai)2. 
t = l , j = l 

Next, we note that E(xi.)=aiy 



1932.1 LEXIS THEORY AND VARIANCE 733 

1 s 

Xi. — ai = — 1L,(%H — aij)> a n d 

(5) 
1 ( s ) 2 1 2 

s2 I y«i ; s2
 itmX 

Since E(xi.) =di, we note that 

(6) E(x].) = E(x<. - 0 2 + ^ 2 . 

By applying (1), we may write 

N TV _ 1 ^ o * 

(7) £ £(*<. - *)2 = - - - X t e O -*<•] + 2 > > - ^)2. 

From (6) and (7), we have 

N jy _ i N N 

(8) E £(««. - x)2 = — - — E 2(*<- - «<)* + E(«< - «)2-

By substituting for E(xi.-ai)2 in (8) from (5), we have 

" 1 N - 1 ^ 2 
E 2^(xi. - x)2 = —• ——— 2-, O**,- - <*<*) 

W AT 

+ X>.--«)2-

E l i m i n a t e ^ ^ ^ = 1 (Aij — a^) from (4) and (9), and we obtain 

N ,s N,s 

E^{xij — xi)2 — X) (au — ai)2 

(io) ^'H1 *-1'*-1 

#*(* - 1) * JV*(* - 1) * 
= - ^ — - ^ E £(*«. - x)2 - -±—-± 2 > , - *Y> 

N - 1 *=i i\T — 1 i .! 

Bernoulli Series. In a Bernoulli series we assume statistical 
homogeneity in the sense that items are so thoroughly mixed 
that the expected value of any statistical estimate is independ
ent of the portion of the population from which the sample is 
drawn. Measurements on the same quantity will serve as an 
illustration, the items differing only by accidental errors. Under 
these conditions, CL i j CL i , CL i — CL, Hence, we would compare 

* See Coolidge, Probability, p. 63, Theorem 8. 
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^ s(s - 1)N " 
(11) 2^ (xu — Xi-Y a n d Zj{xi. — x)2, 

ï = l , y = i N — 1 î==i 

or 
J N,s s N 

(12) — X) (*<ƒ--z».)2 and 2 ( ^ - ~ )̂2> 
7V(s - 1) ,=t1=i # - 1 f i 

and expect to find them equal in a Bernoulli series except for 
sampling fluctuations. Those in (12) are frequently compared 
in the analysis of variance by the procedure of R. A. Fisher. 

Lexis Series. The items within a set of 5 have the same ex
pected value, but the expected values vary from one set to 
another. Thus, aij = ai} but a^a. Then we expect 

j_ N ,s s N 

N(s - 1) ;=i) i=i N - 1 i.i 

The series is said to have supernormal dispersion. 
Poisson Series. There are differences in expected values within 

sets of 5 items, but all the N sets are comparable, that is, 
aijT^cbi', but a,i = a. Then we expect 

(14) —^— E (*<; - ^-)2 > - - - - £(*i- - xy. 
N(s - 1) ^i,y==1 N - 1 *»! 

The series is said to have subnormal dispersion. 
The expected values of the expressions in (12), (13), and (14) 

would be equal in a statistically homogeneous population to the 
expected value of [l/(Ns — 1) ] X ^ i J = i (xij — x)2 which is ordinar
ily regarded as the best estimate of the population variance 
from a sample of Ns items of such a population; that is, 

(15) E £ (*„ - Xi)2 = — — - E X (*,,- - x)\ 
N(s - 1) t-i.î-i Ns - 1 t i ^ i 

To establish (15), we may start with the fact that in a sta
tistically homogeneous system of items 

(i6) — 2 > . - , - - Xi.y 
S—l y„ i 

is our estimate of the population variance based on the use of s 
items drawn at random. Thus, (16) has the same expected value 
as the right member of (15). Furthermore, the arithmetic mean 
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I N ,8 

(17) — — ]T (vu-Xi-)* 
N(s - 1) i«i f,-«i 

of N such independent values as (16) has the same expected 
value as (16). Hence (15) is established. 

To summarize, we have shown with our subdivision of the 
items of the sample into rows and columns that the following 
estimates of variance have the same expected value, in a 
statistically homogeneous population: 

S ^ 
V = — ; where S = > , (xu — x)2, 

C . N ,s 
*-> i ^—\ 

Vi = — -> where St = 2^ (̂ *,- — ̂ ».)2? 
N(s - 1) »« i , , - i 

5 - • / v , s 

(18) Fy - ——L-—y where S, = X) (*»/ - £-i)2, 
s ( # - 1) ^ i . ^ i 

F ^ = •> where 5»; = ]£(£,•. — x)2, 
iV — 1 «=i 

F/* = f where 5,-j = ZJ(X-J — *)2-
5 — 1 y=i 

We thus arrive at estimates of variance used by R. A. Fisher 
without making use of arguments involving the number of de
grees of freedom of the items with which we are concerned. A 
comparison of the numerical values of V& and Vi by taking the 
ratio Va/ Vi serves as an important step in solving the problem 
of testing for significant differences from row to row in (2). 

Similarly, a comparison of the numerical values of F,* and 
Vj by taking the ratio V&/ Vj would be useful in testing the sig
nificance of differences from column to column in (2). In com
parisons of two estimates of variance V' and F by means of the 
ratio V'/ F, R. A. Fisher made a fundamental contribution to 
the theory of applied statistics by finding the distribution func
tion of z = \ log V'/V for the case of a normal parent distribu
tion and showing it to be of such a nature that the significance 
of the discrepancy of z from expectation could be examined ob
jectively and expressed in terms of odds in favor of or against 
a discrepancy as large as or larger than an assigned value. 
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