CESÀRO SUMMABILITY OF DOUBLE SERIES

BY MARGARET GURNEY

1. Definitions and Notation. The familiar Cesàro transform of a double series $\sum_{i,j,=1}^{\infty} u_{ij}$ is given by

(1)
$$\widetilde{S}_{mn}^{(\alpha,\beta)} = S_{mn}^{(\alpha,\beta)} / \left[\binom{m+\alpha-1}{\alpha} \binom{n+\beta-1}{\beta} \right],$$

where

(2)
$$S_{mn}^{(\alpha,\beta)} = \sum_{i,j=1}^{m,n} \binom{m+\alpha-i}{\alpha} \binom{n+\beta-j}{\beta} u_{ij}.$$

The series $\sum_{m,n\to\infty} u_{ij}$ is said to be summable $(C; \alpha, \beta)$ to S if we have $\lim_{m,n\to\infty} \tilde{S}^{(\alpha,\beta)}_{mn} = S$; to be bounded $(C; \alpha, \beta)$ if $|\tilde{S}^{(\alpha,\beta)}_{mn}| < \text{const. for all values of } m$ and n; and to be ultimately bounded $(C; \alpha, \beta)$ if $\lim_{m \to \infty} |\tilde{S}^{(\alpha,\beta)}_{mn}| < \infty$. This definition holds for all values of α and β , real or complex, except negative integers, the binomial coefficients being defined as usual in terms of the gamma function; however we shall be concerned only with real orders greater than -1.

A special but important type of double series is that for which u_{ij} is factorable, say

(3)
$$u_{ij} = v_i w_j, \qquad (i, j = 1, 2, 3, \cdots).$$

Defining

(4)
$$V_m^{(\alpha)} = \sum_{i=1}^m \binom{m+\alpha-i}{\alpha} v_i; \ W_n^{(\beta)} = \sum_{j=1}^n \binom{n+\beta-j}{\beta} w_j,$$

we have, by (2), when (3) holds, $S_{mn}^{(\alpha,\beta)} = V_m^{(\alpha)} W_n^{(\beta)}$, so that, by (1),

(5)
$$\widetilde{S}_{mn}^{(\alpha,\beta)} = \widetilde{V}_m^{(\alpha)} \widetilde{W}_n^{(\beta)},$$

where the factors in the right member of (5) are, respectively, the (C, α) transform of $\sum v_i$ and the (C, β) transform of $\sum w_i$.

2. *Examples*. The relation (5) enables us to obtain very easily examples illustrating the following statements.

THEOREM 1. There is a series $\sum u_{ij}$ which is summable and bounded (C; α,β) for every $\alpha > 0$, $\beta > 0$, while (a) each row and column of $\sum u_{ij}$ has bounded partial sums and (b) each row and column of $\sum u_{ij}$ is non-summable (C, γ) for every $\gamma > -1$.

Let $v_1 = -1$ and $v_i = 2(-1)^i$ when i > 1; then $\sum_{i=1}^m v_i = (-1)^m$ and $\sum v_i$ is, as is well known, summable (C, δ) to 0 for every $\delta > 0.*$ Let $\sum w_i$ be any series whose partial sums are bounded, and which is non-summable (C, γ) for every $\gamma > -1.\dagger$ It is easy to show that the series whose general term is given by

$$u_{ij} = v_i w_j + w_i v_j$$

is summable $(C;\alpha,\beta)$ to 0, and satisfies the other conditions of Theorem 1.

THEOREM 2. Corresponding to each pair of numbers α and β , $\alpha > -1$, $\beta > -1$, there is a series $\sum u_{ij}$ which is summable and bounded (C; α,β) while (a) each row [column] is unbounded (C, $\beta - \delta$) [(C, $\alpha - \delta$)], (b) each row [column] is non-summable but bounded (C, β) [(C, α)] and (c) each row [column] is summable (C, $\beta + \delta$) [(C, $\alpha + \delta$)], for every $\delta > 0$.

Let $v_1 = -1$ and $v_i = 2(-1)^i$ when i > 1, as before. Corresponding to a number $\gamma > -1$, let $\sum w_i^{(\gamma)}$ be the series having

$$\sum_{i=1}^{p} (-1)^{i} \binom{i+\gamma-1}{\gamma}, \quad (p = 1, 2, 3, \cdots),$$

for its sequence of partial sums. Then $\sum w_i^{(\gamma)}$ has‡ an unbounded $(C, \gamma - \delta)$ transform, a non-convergent but bounded (C, γ) transform, and a convergent $(C, \gamma + \delta)$ transform. These facts and properties of $\sum v_i$ enable us to show that the series whose general term is given by $u_{ij} = v_i w_j^{(\beta)} + w_i^{(\alpha)} v_j$ is summable $(C; \alpha, \beta)$ to 0 and fulfills the other conditions of Theorem 2.

826

^{*} Σv_i is bounded (C, 0) and summable (C, 1) to 0; it is therefore summable (C, δ) to 0 for every $\delta > 0$. See Zygmund, Sur un théorème de la théorie de la sommabilité, Mathematische Zeitschrift, vol. 25 (1926), p. 291.

[†] An example of such a series is Σw_i , where w_i is the coefficient of x^i in the series $\sum_{\nu=0}^{\infty} (-1)^{\nu} x^{\nu!}$. See Hardy, On certain oscillating series, Quarterly Journal of Mathematics, vol. 38 (1906-7), p. 286. Hardy's result shows that $\sum w_i$ is not Abel summable, and non-summability (C, γ) for every $\gamma > -1$ follows.

[‡] See Knopp, Unendliche Reihen, 3d edition, 1931, p. 496, Ex. 2. The discussion is given for $\gamma = k$, an integer, but it holds also for any real $\gamma > -1$.

3. Necessary Conditions for Summability. We now give two necessary conditions for summability of double series.

THEOREM 3. If a double series is ultimately bounded (C; k, l), k and l being fixed positive integers, then each sufficiently advanced row [column] is bounded (C, l) [(C, k)].

By the ultimate boundedness (C; k, l) there exist constants K, M, and N such that $|\tilde{S}_{mn}^{(k,l)}| < K$ for m > M, n > N. Fix m > M + k + 1; then for every n > N, $|\tilde{S}_{m-r,n}^{(k,l)}| < K$, for r = 0, 1, 2, \cdots , k+1. Moreover, we have

$$|S_{m-r,n}^{(k,l)}| / {\binom{m+k-1}{k} \binom{n+l-1}{l}}$$

= $|\tilde{S}_{m-r,n}^{(k,l)}| {\binom{m+k-r-1}{k}} / {\binom{m+n-1}{k}} < K,$

and

1932.]

$$\left| \sum_{r=0}^{k+1} (-1)^r \binom{k+1}{r} S_{m-r,n}^{(k,l)} / \binom{m+k-1}{k} \binom{n+l-1}{l} \right| < K \sum_{r=0}^{k+1} \binom{k+1}{r} = 2^{k+1} K.$$

The product of $\binom{m+k-1}{k}$ by the sum on the left is the (C, l) transform of the *m*th row of the double series.* This row is a simple series which is ultimately bounded (C, l) and therefore is bounded (C, l) as was to be shown.

THEOREM 4. If a double series is summable (C; k, l), k and l being fixed positive integers, then each sufficiently advanced row [column] is either (a) summable $(C, l+\delta)$ [$(C, k+\delta)$] for every $\delta > 0$ or (b) non-summable (C, γ) for every $\gamma > -1$.

This follows from Theorem 3 and the result of Zygmund, loc. cit.

BROWN UNIVERSITY

* This is seen by equating coefficients of $x^m y^n$ in the identity $(1-x)^{k+1} \sum_{i,j=1}^{\infty} S_{ij}^{(k,l)} x^i y^j = (1-y)^{-(l+1)} \sum_{i,j=1}^{\infty} u_{ij} x^i y^j.$