CESÅRO SUMMABILITY OF DOUBLE SERIES

BY MARGARET GURNEY

1. Definitions and Notation. The familiar Cesàro transform of a double series $\sum_{i, j,=1}^{\infty} u_{i j}$ is given by

$$
\begin{equation*}
\tilde{S}_{m n}^{(\alpha, \beta)}=S_{m n}^{(\alpha, \beta)} /\left[\binom{m+\alpha-1}{\alpha}\binom{n+\beta-1}{\beta}\right], \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{m n}^{(\alpha, \beta)}=\sum_{i, j=1}^{m, n}\binom{m+\alpha-i}{\alpha}\binom{n+\beta-j}{\beta} u_{i j} \tag{2}
\end{equation*}
$$

The series $\sum u_{i j}$ is said to be summable $(C ; \alpha, \beta)$ to S if we have $\lim _{m, n \rightarrow \infty} \tilde{S}_{m n}^{(\alpha, \beta)}=S$; to be bounded $(C ; \alpha, \beta)$ if $\left|\tilde{S}_{m n}^{(\alpha, \beta)}\right|<$ const. for all values of m and n; and to be ultimately bounded ($C ; \alpha, \beta$) if $\lim \sup _{m, n \rightarrow \infty}\left|\tilde{S}_{m n}^{(\alpha, \beta)}\right|<\infty$. This definition holds for all values of α and β, real or complex, except negative integers, the binomial coefficients being defined as usual in terms of the gamma function; however we shall be concerned only with real orders greater than -1 .

A special but important type of double series is that for which $u_{i j}$ is factorable, say

$$
\begin{equation*}
u_{i j}=v_{i} w_{j}, \quad(i, j=1,2,3, \cdots) . \tag{3}
\end{equation*}
$$

Defining

$$
\begin{equation*}
V_{m}^{(\alpha)}=\sum_{i=1}^{m}\binom{m+\alpha-i}{\alpha} v_{i} ; W_{n}^{(\beta)}=\sum_{j=1}^{n}\binom{n+\beta-j}{\beta} w_{j} \tag{4}
\end{equation*}
$$

we have, by (2), when (3) holds, $S_{m n}^{(\alpha, \beta)}=V_{m}^{(\alpha)} W_{n}^{(\beta)}$, so that, by (1),

$$
\begin{equation*}
\tilde{S}_{m n}^{(\alpha, \beta)}=\tilde{V}_{m}^{(\alpha)} \tilde{W}_{n}^{(\beta)}, \tag{5}
\end{equation*}
$$

where the factors in the right member of (5) are, respectively, the (C, α) transform of $\sum v_{i}$ and the (C, β) transform of $\sum w_{j}$.
2. Examples. The relation (5) enables us to obtain very easily examples illustrating the following statements.

Theorem 1. There is a series $\sum u_{i j}$ which is summable and bounded ($C ; \alpha, \beta$) for every $\alpha>0, \beta>0$, while (a) each row and column of $\sum u_{i j}$ has bounded partial sums and (b) each row and column of $\sum u_{i j}$ is non-summable (C, γ) for every $\gamma>-1$.

Let $v_{1}=-1$ and $v_{i}=2(-1)^{i}$ when $i>1$; then $\sum_{i=1}^{m} v_{i}=(-1)^{m}$ and $\sum v_{i}$ is, as is well known, summable (C, δ) to 0 for every $\delta>0 .{ }^{*}$ Let $\sum w_{j}$ be any series whose partial sums are bounded, and which is non-summable (C, γ) for every $\gamma>-1 . \dagger$ It is easy to show that the series whose general term is given by

$$
u_{i j}=v_{i} w_{j}+w_{i} v_{j}
$$

is summable $(C ; \alpha, \beta)$ to 0 , and satisfies the other conditions of Theorem 1.

Theorem 2. Corresponding to each pair of numbers α and β, $\alpha>-1, \beta>-1$, there is a series $\sum u_{i j}$ which is summable and bounded ($C ; \alpha, \beta$) while (a) each row [column] is unbounded (C, $\beta-\delta$) $[(C, \alpha-\delta)]$, (b) each row [column] is non-summable but bounded (C, β) $[(C, \alpha)]$ and (c) each row [column] is summable $(C, \beta+\delta)[(C, \alpha+\delta)]$, for every $\delta>0$.

Let $v_{1}=-1$ and $v_{i}=2(-1)^{i}$ when $i>1$, as before. Corresponding to a number $\gamma>-1$, let $\sum w_{i}^{(\gamma)}$ be the series having

$$
\sum_{i=1}^{p}(-1)^{i}\binom{i+\gamma-1}{\gamma}, \quad(p=1,2,3, \cdots)
$$

for its sequence of partial sums. Then $\sum w_{i}^{(\gamma)}$ has \ddagger an unbounded ($C, \gamma-\delta$) transform, a non-convergent but bounded (C, γ) transform, and a convergent ($C, \gamma+\delta$) transform. These facts and properties of $\sum v_{i}$ enable us to show that the series whose general term is given by $u_{i j}=v_{i} w_{j}{ }^{(\beta)}+w_{i}^{(\alpha)} v_{j}$ is summable ($C ; \alpha, \beta$) to 0 and fulfills the other conditions of Theorem 2.

[^0]3. Necessary Conditions for Summability. We now give two necessary conditions for summability of double series.

Theorem 3. If a double series is ultimately bounded ($C ; k, l$), k and l being fixed positive integers, then each sufficiently advanced row [column] is bounded $(C, l)[(C, k)]$.

By the ultimate boundedness ($C ; k, l$) there exist constants K, M, and N such that $\left|\tilde{S}_{m n}^{(k, l)}\right|<K$ for $m>M, n>N$. Fix $m>M+k+1$; then for every $n>N,\left|\tilde{S}_{m-r, n}^{(k, l)}\right|<K$, for $r=0$, $1,2, \cdots, k+1$. Moreover, we have

$$
\begin{aligned}
& \left|S_{m-r, n}^{(k, l)}\right| /\binom{m+k-1}{k}\binom{n+l-1}{l} \\
= & \left|\tilde{S}_{m-r, n}^{(k, l)}\right|\binom{m+k-r-1}{k} /\binom{m+n-1}{k}<K,
\end{aligned}
$$

and

$$
\begin{gathered}
\sum_{r=0}^{k+1}(-1)^{r}\binom{k+1}{r} S_{m-r, n}^{(k, l)} /\binom{m+k-1}{k}\binom{n+l-1}{l} \\
<K \sum_{r=0}^{k+1}\binom{k+1}{r}=2^{k+1} K
\end{gathered}
$$

The product of $\left(\begin{array}{c}m+k-1\end{array}\right)$ by the sum on the left is the (C, l) transform of the m th row of the double series.* This row is a simple series which is ultimately bounded (C, l) and therefore is bounded (C, l) as was to be shown.

Theorem 4. If a double series is summable ($C ; k, l$), k and l being fixed positive integers, then each sufficiently advanced row [column] is either (a) summable $(C, l+\delta)[(C, k+\delta)]$ for every $\delta>0$ or (b) non-summable (C, γ) for every $\gamma>-1$.

This follows from Theorem 3 and the result of Zygmund, loc. cit.

Brown University

[^1]
[^0]: * Σv_{i} is bounded $(C, 0)$ and summable $(C, 1)$ to 0 ; it is therefore summable (C, δ) to 0 for every $\delta>0$. See Zygmund, Sur un théorème de la théorie de la sommabilité, Mathematische Zeitschrift, vol. 25 (1926), p. 291.
 \dagger An example of such a series is Σw_{j}, where w_{j} is the coefficient of x^{j} in the series $\sum_{\nu=0}^{\infty}(-1)^{\nu} x^{\nu!}$. See Hardy, On certain oscillating series, Quarterly Journal of Mathematics, vol. 38 (1906-7), p. 286. Hardy's result shows that $\sum w_{j}$ is not Abel summable, and non-summability (C, γ) for every $\gamma>-1$ follows.
 \ddagger See Knopp, Unendliche Reihen, 3d edition, 1931, p. 496, Ex. 2. The discussion is given for $\gamma=k$, an integer, but it holds also for any real $\gamma>-1$.

[^1]: * This is seen by equating coefficients of $x^{m} y^{n}$ in the identity

 $$
 (1-x)^{k+1} \sum_{i, j=1}^{\infty} S_{i j}^{(k, l)} x^{i} y^{j}=(1-y)^{-(l+1)} \sum_{i, j=1}^{\infty} u_{i j} x^{i} y^{j} .
 $$

