SOLUTION OF THE ZARANKIEWICZ PROBLEM*

BY E. W. MILLER

1. Introduction. In 1925 C. Zarankiewicz† proposed the following problem: Is every acyclic continuous curve‡ homeomorphic with some proper subset of itself? It is the purpose of this paper to show that the above question is to be answered in the negative.

Our result will depend upon the following theorem.

THEOREM. The acyclic continuous curve S is homeomorphic with no proper subset of itself if it contains a set K such that (1) each point of K is a fixed point with respect to any (1, 1) bicontinuous transformation of S into a subset of itself; and (2) each point of S of (Urysohn-Menger) order >1 lies on an arc of S whose end points are points of K.

PROOF. Let p be any point of S of order >1. There is an arc a_1a_2 in S which contains p and whose end points are points of K. Let T be any (1, 1) bicontinuous transformation of S into a subset of itself. Since $T(a_1) = a_1$ and $T(a_2) = a_2$, and since there is just one arc in S from a_1 to a_2 , T must carry a_1a_2 into itself. Hence there is a point q of a_1a_2 such that T(q) = p. Thus the subset of S into which T carries S must contain all points of S of order >1. As these points are dense in S, this subset must be S itself.

Our problem, then, is to construct an acyclic continuous curve which satisfies the conditions of the above theorem. We shall first define certain auxiliary sets $E_{x_1x_2...x_k}$.

2. Definition of the Sets $E_{x_1x_2...x_k}$. Within a linear interval ab choose points a_n so that $a_{n+1} < a_n$ and $\lim a_n = a$. Within each interval $a_{n+1}a_n$ choose points $a_{n,m}$ so that $a_{n,m} < a_{n,m+1}$ and $\lim_{m \to \infty} a_{n,m} = a_n$. At each point a_n and $a_{n,m}$ erect a perpendicular to ab. Take these perpendiculars so that for any $\epsilon > 0$ only a finite number of them have a length $> \epsilon$. The set of points obtained in this way will be called a set E_1 . The point a will be

^{*} Presented to the Society, October 29, 1932.

[†] Fundamenta Mathematicae, vol. 7, p. 381, problem 37.

[‡] The term *continuous curve* is used throughout the present article to mean a compact, locally connected, metric continuum.

called the *origin* of E_1 and the perpendiculars which we have erected will all be referred to as *perpendiculars of rank* 1. It is clear that E_1 is an acyclic continuous curve. Everything will be the same in the definition of E_2 except for this one change: the points $a_{n,m}$ are taken within $a_{n+1}a_n$ so that $a_{n,m+1} < a_{n,m}$ and $\lim_{m \to \infty} a_{n,m} = a_{n+1}$.

Let us now suppose that we have defined sets $E_{x_1x_2...x_i}$, where x_i $(i \leq k)$ can have either of the two values 1 and 2. Let us suppose furthermore that we have defined the expressions origin of $E_{x_1x_2...x_k}$ and perpendiculars of rank k of $E_{x_1x_2...x_k}$. We suppose finally that $E_{x_1x_2...x_k}$ has been so defined that it is an acyclic continuous curve. To define the set $E_{x_1x_2...x_k1}$, we proceed as follows. We replace each perpendicular of rank k of $E_{x_1x_2...x_k}$ by a set E_1 whose origin is the foot of that perpendicular. Furthermore we do this, as we clearly can, so that the resulting set $E_{x_1x_2...x_{k-1}}$ is an acyclic continuous curve. By origin of $E_{x_1x_2...x_k}$ we will mean merely the origin of $E_{x_1x_2...x_k}$, and by perpendiculars of rank k+1 of $E_{x_1x_2...x_k1}$ the perpendiculars of rank 1 of the sets E_1 employed in obtaining $E_{x_1x_2...x_k1}$ from $E_{x_1x_2...x_k}$. Everything will be the same in the definition of $E_{x_1x_2...x_k}$ except for this one change: in obtaining $E_{x_1x_2...x_k}$ from $E_{x_1x_2...x_k}$ we shall employ sets E_2 instead of sets E_1 .

3. Construction of an Acyclic Continuous Curve which Satisfies the Conditions of the Theorem. This construction will be achieved through the use of the following sequence of sets:

$$E_1, E_{21}, E_{221}, \cdots, E_{22\cdots 21}, \cdots$$

Let us first re-label these sets in the order named as

$$W_1, W_2, W_3, \cdots, W_n, \cdots$$

We begin with a set W_1 whose origin is a point a and adjoin to it three line segments ac, ad, and ae so that the only point which any two of the sets W_1 , ac, ad, and ae have in common is the point a. Let us denote the resulting acyclic continuous curve by S_1 . We now consider the arc in S_1 from each end point of S_1 to a. There will be a first branch point of S_1 in the order from the end point of S_1 to a on such an arc, and the portion of the arc from the end point of S_1 to this branch point is a line segment. Denote the mid-point of this segment by x. We obtain, of course,

a countable infinity of points x. With this countable infinity of points we associate in a (1, 1) way* the sets of odd index

$$W_3, W_5, W_7, \cdots$$

and take x as the origin of the associated set W(x) in such a way that S_1 and W(x) have only the point x in common. Also we attach to the point x a straight line segment having x as one end point and having only x in common with $W(x)+S_1$. All this can clearly be done so that the resulting set S_2 is an acyclic continuous curve. Now S_3 will be related to S_2 in the same way as S_2 is related to S_1 , except that we make use of sets $W_{2(2m+1)}$ instead of sets W_{2m+1} . In general S_{n+1} is related to S_n in the same way as S_n is related to S_{n-1} , except that we make use of sets $W_{2n-1(2m+1)}$ instead of sets $W_{2n-2(2m+1)}$. Now constructions of the general type just described are common in the literature and it is well known† that such a construction can be carried through so that the closure of the sum of the acyclic continuous curves successively obtained is itself an acyclic continuous curve. We may suppose then that $S = (\sum_{n=1}^{\infty} S_n)$ is an acyclic continuous curve.

It will now be shown that S satisfies the conditions of our theorem. We notice first that any branch point of S is either of order 3 or order 4. The points of order 4 are the point a of S_1 and the points x which arise at successive stages of our process of construction. We will denote the set of points of order 4 of S by K, and it will be shown that K has the properties of the set K in our theorem. In fact, it is obvious from the way in which S was constructed that K has property (2) of the theorem. We need only show that it has property (1).

In the first place, we notice that if T is any (1,1) bicontinuous transformation of S into a subset of itself, T must carry each point of K into a point of K, since no point of S is of order >4 and K contains all points of order 4 of S. Let us suppose that there are two *distinct* points q_1 and q_2 of K such that $T(q_1) = q_2$. Let us suppose for definiteness (the argument is similar in the opposite case) that the set W which has q_1 as its origin is of

^{*} It is clear that this (1, 1) correspondence can be made perfectly definite. † For a similar construction and proof that the result is an acyclic continuous curve see K. Menger, Fundamenta Mathematicae, vol. 10 (1927), p. 108.

lower index than the set W which has q_2 as its origin. If we consider any point q of K we notice that of the four essentially distinct arcs of S which meet in q just one has the property that the branch points on it have q as limit point. Let us denote this arc by qb and take the point b so close to q that qb is a line segment and contains no point of order 4 other than q. Let us now consider the arcs q_1b_1 and q_2b_2 . It is clear that there is a sub-arc q_1b_1' of q_1b_1 and a sub-arc q_2b_2' of q_2b_2 such that the transform of q_1b_1' is q_2b_2' . Any branch point of S on q_1b_1' is transformed into a branch point of S on q_2b_2' . If $W(q_1) = W_1$, we see that we have already reached a contradiction. For $W_1 = E_1$ and $W(q_2) = W_m$ = E_2 ..., which means that q_1b_1' contains branch points which are limit points of branch points from the left, while q_2b_2' contains no such points. If $W(q_1) = W_2$, we fix our attention upon some one branch point of S interior to q_1b_1' . Let us denote this point by r_1 and the corresponding point on q_2b_2' by r_2 , and consider the perpendiculars to q_1b_1' and q_2b_2' at r_1 and r_2 , respectively. Denote these perpendiculars by r_1s_1 and r_2s_2 . Now since $W_2 = E_{21}$, r_1 is a limit point along r_1s_1 of branch points of S which are in turn limit points of branch points of S from below along r_1s_1 , while r_2s_2 contains no such points since $W(q_2) = W_m = E_{22 \dots 1}$. It is obvious that the argument exemplified above can be extended to apply to the general case where $W(q_1) = W_n$ and $W(q_2) = W_m$ whether n < m or m < n. It follows that $q_1 = q_2$ if q_1 and q_2 belong to K and $T(q_1) = q_2$.

In conclusion it may be remarked that it is possible to construct an acyclic continuous curve which contains no point of order >3 and which is homeomorphic with no proper subset of itself. We need only employ sets E_{212} , E_{2112} , E_{21112} , \cdots instead of sets E_1 , E_{21} , E_{221} , \cdots . The proof will involve only a few more details than the proof given here.

THE UNIVERSITY OF MICHIGAN