Since $a \leqq 374930473917097$, we have in each case $k \leqq 39111579$. Thus the problem of representing N as the difference of squares was split into 8 parts. The first two parts were covered by the machine without any result. On the third run, however, the machine stopped almost at once at $x=58088$. This gives

$$
a=556846584735, \quad b=556644555032
$$

Hence we have the factorization

$$
2^{79}-1=2687 \cdot 202029703 \cdot 1113491139767
$$

It is not difficult to show that the factors are primes. This is the 13 th composite Mersenne number to be completely factored. The author's recent report* on Mersenne numbers should be changed accordingly.

Pasadena, California

MATRICES WHOSE s TH COMPOUNDS ARE EQUAL

BY JOHN WILLIAMSON

If A is a matrix of m rows and n columns and s is any positive integer less than or equal to the smaller of n and m, from A can be formed a new matrix A_{s} of ${ }_{m} C_{s}$ rows and ${ }_{n} C_{s}$ columns, the elements in the t th row of A_{s} being the ${ }_{n} C_{s}$ determinants of order s that can be formed from the t_{1} th, \cdots, t_{s} th rows of A, and the elements in the t th column being the ${ }_{m} C_{s}$ determinants of order s that can be formed from the t_{1} th, \cdots, t_{s} th columns of A. The matrix A_{s}, so defined, is called the s th compound matrix of A. In the following note we discuss the necessary and sufficient conditions under which the s th compounds of two matrices are equal. We shall require the following lemmas.

Lemma I. The rank of the sth compound of a matrix A, whose rank is r, is ${ }_{r} C_{s}$ if $r \geqq s$ and is zero if $s>r . \dagger$

[^0]Lemma II. The sth compound of the product of two matrices is the product of the sth compounds of the two matrices, or, in symbols,*

$$
\begin{equation*}
(A B)_{s}=A_{s} B_{s} \tag{1}
\end{equation*}
$$

Theorem. If A is a matrix of rank r, the necessary and sufficient condition that $A_{s}=B_{s}$ is that
(a) the rank of B be less than s when $r<s$;
(b) there exist two non-singular matrices C and D such that

$$
C A D=\left(\begin{array}{cc}
T & 0 \\
0 & 0
\end{array}\right), \quad C B D=\left(\begin{array}{cc}
S & 0 \\
0 & 0
\end{array}\right)
$$

where T and S are two non-singular matrices of r rows and columns such that $|T|=|S|$, when $r=s$;
(c) $A=\omega B$, where ω is an sth root of unity, when $r>s$.

In case (a) if $A_{s}=B_{s}$, then $B_{s}=0$ and by Lemma I the rank of B is less than r. On the other hand if the rank of B is less than s, then $B_{s}=0=A_{s}$. In case (b) the sufficiency of the condition follows from (1) and the fact that

$$
\left(\begin{array}{ll}
T & 0 \\
0 & 0
\end{array}\right)_{s}=\left(\begin{array}{ll}
S & 0 \\
0 & 0
\end{array}\right)_{s}
$$

We now proceed to prove that the condition stated above is necessary. Since A has rank r there exist two non-singular matrices C and D such that

$$
C A D=R=\left(\begin{array}{ll}
T & 0 \\
0 & 0
\end{array}\right)
$$

where T is any non-singular r-rowed square matrix. If

$$
C B D=F=\left(\begin{array}{ll}
S & G \\
H & K
\end{array}\right)
$$

where S is an r-rowed square matrix, G an r by $n-r$ matrix, H an $m-r$ by r matrix, and K an $m-r$ by $n-r$ matrix, then, since $A_{s}=B_{s}$, it follows that $R_{s}=F_{s}$ and $|S|=|T| \neq 0$. Since R_{s} contains only one element different from zero, every determinant of order s that can be formed from $s-1$ columns of S and one of G is zero. If
$S=\left(s_{i j}\right), \quad G=\left(g_{i q}\right), \quad(i, j=1,2, \cdots r ; \quad q=1,2, \cdots, n-r)$,

[^1]and $S_{i j}$ is the cofactor of $s_{i j}$ in S, then
\[

$$
\begin{equation*}
\sum_{i=1}^{r} S_{i j} g_{i q}=0, \quad(j=1,2, \cdots, r ; q=1,2, \cdots, n-r) \tag{2}
\end{equation*}
$$

\]

For a fixed q, the equation (2) represents a set of r homogeneous equations in the r unknowns $g_{i q}$, and since $\left|S_{i j}\right|=|S|^{r-1} \neq 0$, it follows that $g_{i q}=0$. Accordingly $G=0$ and by a similar argument $H=0$, so that F has the form

$$
\left(\begin{array}{ll}
S & 0 \\
0 & K
\end{array}\right)
$$

But, since S is non-singular, at least one of the quantities $S_{i j} \neq 0$. If k is any element of K, we observe that $k S_{i j}$ is an element of F_{s} which must be zero, and therefore $K=0$.

In case (c), the sufficiency of the condition is an immediate consequence of (1). If the rank r of A is greater than s, there must exist in A a submatrix T of $s+1$ rows and columns, which is non-singular. Without any loss of generality we may suppose that

$$
A=\left(\begin{array}{cc}
T & K \\
L & M
\end{array}\right), \quad B=\left(\begin{array}{cc}
S & H \\
P & Q
\end{array}\right)
$$

where S is an ($s+1$)-rowed square matrix. From $A_{s}=B_{s}$, we deduce that $T_{s}=S_{s}$ and

$$
\left|T_{s}\right|=|T|^{s}=\left|S_{s}\right|=|S|^{s}
$$

so that

$$
\begin{equation*}
|S|=\omega|T| \tag{3}
\end{equation*}
$$

where ω is an sth root of unity. Moreover*

$$
\left(T_{s}\right)_{s}=|T|^{s-1} T=\left(S_{s}\right)_{s}=|S|^{s-1} S
$$

so that, by (3), $S=\omega T$. Since T is non-singular, there must exist in T a non-singular submatrix T^{\prime} of s rows and columns. If A^{\prime} denote a matrix obtained from A by a rearrangement of rows and columns, so that T^{\prime} occurs in the top left-hand corner of A^{\prime}, and B^{\prime} is the matrix obtained from B by exactly the same rearrangement, then

[^2]\[

A^{\prime}=\left($$
\begin{array}{cc}
T^{\prime} & K^{\prime} \\
L^{\prime} & M^{\prime}
\end{array}
$$\right), \quad B^{\prime}=\left($$
\begin{array}{cc}
\omega T^{\prime} & H^{\prime} \\
P^{\prime} & Q^{\prime}
\end{array}
$$\right)
\]

and from $A_{s}=B_{s}$ it follows that $A_{s}{ }^{\prime}=B_{s}{ }^{\prime}$. If

$$
\begin{aligned}
& T^{\prime}=\left(t_{i j}\right), K^{\prime}=\left(k_{i q}\right), \quad H^{\prime}=\left(h_{i q}\right), \\
&(i, j=1,2, \cdots, s ; q=1,2, \cdots, n-s),
\end{aligned}
$$

and $T_{i j}$ denote the cofactor of $t_{i j}$ in T^{\prime}, then

$$
\sum_{i=1}^{s} T_{i j} k_{i q}=\sum_{i=1}^{s} \omega^{s-1} T_{i j} h_{i q}, \quad \text { or } \quad \sum_{i=1}^{s} T_{i j}\left(k_{i q}-\omega^{s-1} h_{i q}\right)=0
$$

But, since $\left|T_{i j}\right| \neq 0, k_{i q}-\omega^{s-1} h_{i q}=0$ or $H^{\prime}=\omega K^{\prime}$. Similarly it may be shown that $P^{\prime}=\omega L^{\prime}$. Let $T^{\prime \prime}$ be a submatrix of T^{\prime} of order $s-1$ which is non-singular. If $m_{i j}$ is any element of M^{\prime} and $q_{i j}$ the corresponding element of Q^{\prime}, the determinant of order s formed from A^{\prime} of the $s-1$ rows and columns of which $T^{\prime \prime}$ is composed and the row and column in which $m_{i j}$ lies is equal to the corresponding determinant formed from B^{\prime}. But from the equality of these two determinants it follows that $m_{i j}\left|T^{\prime \prime}\right|=\omega^{s-1} q_{i j}\left|T^{\prime \prime}\right|$ and therefore, since $\left|T^{\prime \prime}\right| \neq 0$, it follows that $Q^{\prime}=\omega M^{\prime}, A^{\prime}=\omega B^{\prime}$, and $A=\omega B$. This completes the proof of the theorem.

The Johns Hopkins University

REMARKS ON PROPOSITIONS $* 1 \cdot 1$ AND $* 3 \cdot 35$
OF PRINCIPIA MATHEMATICA \dagger

BY B. A. BERNSTEIN

1. Object. Among the propositions of the theory of deduction underlying Whitehead and Russell's Principia Mathematica are the two following:
*1.1. Anything implied by a true elementary proposition is true.
*3•35. ト: $p \cdot p \supset q \cdot \supset \cdot q$.
The authors interpret $* 3 \cdot 35$ as "if p is true, and q follows from it, then q is true," and they remark that $* 3 \cdot 35$ "differs
[^3]
[^0]: * This Bulletin, vol. 38 (1932), p. 384. Dr. N. G. W. H. Beeger has kindly called my attention to the fact that $2^{233}-1$ has two known prime factors and should be classified accordingly.
 \dagger Cullis, Matrices and Determinoids, vol. 1, p. 289.

[^1]: * H. W. Turnbull, Determinants, Matrices and Invariants, pp. 81-82.

[^2]: * $\left(T_{s}\right)_{s}$ denotes the s th compound of T_{s}. That $\left(T_{s}\right)_{s}=|T|^{s-1} T$ is simply the well known theorem on the adjugate of the adjugate of a matrix.

[^3]: \dagger Presented to the Society, September 2, 1932.

