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where 351- is* the relative discriminant of i£;_i with respect to 
Ki. The field K is of degree e = e(1)-e(2) • • • e(t) with respect to F2 

and by the last reference 

D = # # ( © ) , 

where 35 is the relative discriminant of K with respect to F2. 
By the Lemma, every iV(2)<) > 1. I t follows that iV(35) > 1. But, 
by a result due to Chevally, h2 divides hi if there is no field K, 
Fi^K>Fi, such that the relative discriminant of K with 
respect to F2 is of norm unity.t The theorem follows. 

UNIVERSITY OF KENTUCKY 

SOME APPLICATIONS OF MURPHY'S 
THEOREMJ 

BY H. BATEMAN 

It is well known that the linear partial differential equa
tions of mathematical physics possess solutions in the form of 
definite integrals with limits depending on the variables enter
ing into the partial differential equations. The law connecting 
the limits of such an integral with the integrand looks at first 
sight rather mysterious but the whole matter becomes clear 
when the integral is expressed as a contour integral with the aid 
of a theorem due to Murphy and, in a slightly different form, 
to Cauchy.§ 

If C is a closed contour containing just one root, a, of the 
equation F(x) = 0 and just one root, &, of the equation G(x) =0 , 
then, if the radii from these roots turn completely round just 
once and in one direction as a point describes this contour and 
if the functions ƒ (z), Jf(z)dz, F(z), and G(z) are analytic and uni-

* Bachmann, loc. cit., p. 452. 
f Chevally, Relation entre le nombre de classes d'un sous-corps et celui d'un 

sur-corps, Comptes Rendus, vol. 192 (1931), pp. 257-258. 
% Presented to the Society, December 27, 1932. 
§ R. Murphy, Transactions of the Cambridge Philosophical Society, vol. 

3 (1830), p. 429, A. L. Cauchy, Journal de l'École Polytechnique, vol. 12 
(1823), p. 580. Murphy's integral has been transformed into a contour integral 
from which Cauchy's relation may be obtained by an integration by parts. 
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form at all points inside C and on this contour, we have 

•» i /• G(z) 

•c ~F(z)' 
(1) f f(x)dx = -L f f{z)dz\0g-

J a 2Tt J C 

To apply this theorem to Laplace's equation in n variables, 

dW dW d2V 
(2) + + • • • + = 0, 

dxf dx£ dXr? 
we make use of the fact that if C\, c2, • • • , cn are constants 
satisfying the equation £i2 + £22 + • • * + cn

2 = 0, the function 

V= (xx
2 +x£ + h*n8)1_n/2 

(xi~ci)2+(x2—c2y+ • • • +{xn—cny 
log 

%? + X2
2 + • • • + %n 

is a particular solution. This is easily verified by noticing that if 
r2 = x? -\-x£ + • • • +#n2, then, for sufficiently large values of r, 
the function V can be expanded in a power series of type 

2>2>(ci*i + c2x2 + • • • + cnxnyr2-n~2v, 

and each term of this series is a solution of the equation. 
Generalizing this solution we consider the integral 

I f V H2 K21 

where 

n n 

R2 = £ [ * » -*»(*)]*, # 2 = Hl*m - Cm(s)]*, 
m = l m==l 

n 

#2 = £ [ * » - erow]2, 

and £W(X), Cm(s), em(/) are analytic functions of their arguments 
in suitable domains. The quantities s and / are, moreover, given 
as functions of z by the equations 

E k W - {«(s)]2 = o, È M o - ^(z)]2 = o. 

The contour C is chosen so that f(z)R2~n is analytic in the en-
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closed realm, so that the equation R = Q has no root within it, 
and so that log (H2/K2) is an analytic function of z which is in
finite only at two points within C and returns to its initial value 
when a point goes round C. We may also consider an integral 

— f 
2iri J c 

R*-»f(z)dzlog—, 
W 

where 

U= ^2lm(z)[xm — Um(z)], W= ^2pm(z)[xm — Vm(z)]y 

7tt=l ra=l 

m=l ra=l 

In both cases the integrand of the integral F is a solution of (2) 
for all values of z not depending on the variables x. 

The results obtained by considering these two integrals imply 
that the integral 

, a f(z)dz 

ƒ' 
J o 

Rn-2 

is a solution of equation (2) if a is denned either by the equa 
tions 

^2lm(a)[xm — um(a)] = 0, ^2[lm(a)]2 = 0, 

or by the equations 

£ [ * * - cm(s)]2 = 0, E k W - fm(<0]2 = 0. 

These results are well known*; they are generally more useful 
when applied to the equation of wave motion than when applied 
to Laplace^ equation, because in the former case the limits of 
the integral may be real. 

In the case of the equation 

/ d d d\ 

\dx dy dz/ 

where F{x1 y, z) is a homogeneous polynomial of degree n in 
x, y, and z, we may form a solution of type 

* H. Bateman, this Bulletin, vol. 24 (1918), p. 296; The Tôhoku Mathe
matical Journal, vol. 13. 
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V = — f dsf[xi(s) + yv(s) 
2iri J c 

xÇ(s) + yv(s) + zUs) - *(*) 
+ zns), s\ log , 

where 

F[ f (s ) ,u (s ) , f (5 ) ] ^0 . 

An evaluation of the integral by means of Murphy's theorem 
gives the solution 

V = f ƒ[*{(*) + wW + *fW, *]<**, 
•J a 

where the limits a and b are defined by the equations 

xi(a) + yn(a) + zt(a) — </>0) = 0, 

**(*) + yi?(« + «f (« ~ Hb) = 0, 

respectively. This result has already been established in another 
way with the aid of an extension of Lagrange's expansion.* 
Murphy's theorem fails when the limits of the integral are roots 
of the same equation F(x)=0. In this case there is a slight 
modification of the formula in which a double loop integral is 
used. If the contour C is replaced by a contour shaped like a 
figure of eight, with a root of F(x) = 0 in each oval, the integral 

- f f (z)dz log F(z) = f f(x)dx, 
2wi 

where a and b are roots of F(x) = 0 contained in the ovals of 8. 
This equation may be derived from Cauchy's equation by an 
integration by parts. 

Murphy's formula needs modification also when the function 
f{z) is not uniform. The type of modification which is needed 
will be shown by a consideration of the following example. Let 

<p(x)dx J
a <j>(x)dx 

-a ( ^ 2 " ^ ~ X ^ ' 

* H. Bateman, Transactions of this Society, vol. 28 (1926), p. 346. The 
special case in which ƒ is independent of its first argument is given by A. L. 
Dixon, Messenger of Mathematics, vol. 33 (1904), p. 172. 
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The first step is to form a uniform integrand by making the 
substitution x = a cos 6. We may then write 

/ 
/

• * i f rcos (ir) i 
<j>(a cos d)dd = I <j)(a cos r) log \dr, 

o 2-KÏJ c Lsin ( | r ) J 

where C is a simple contour enclosing the points r = 0 and r = T 
but no point of type r = mr where n is different from 0 and 1. 
Transforming back to the variable z given by z = a cos r, we 
obtain 

wiJr (a2 - z2)1'2 \ a - z) 4wiJr (a2 — z2) 

where T is a contour which crosses itself at two points A and B 
so as to form two enclosed loops one of which contains the point 
— a and the other the point a. By using a similar type of con
tour with a loop enclosing the branch point, we may write with 
n = 3 

rb f(z)dz 1 r ƒ(«)& H2 

V = ——- = — — log —, 
J a R 4<jriJr R R2 

where b is a value of z which makes R2 = 0 and a is a value of z 
which makes H2 = 0. Since the integral with limits 0 and a has 
been shown to be a solution of Laplace's equation, it follows 
that the integral 

ra f(z)dz 
Jo R 

is a solution of Laplace's equation. Particular cases of this the
orem have been known for some time, but a simple proof of the 
general theorem has been lacking. A long proof by direct differ
entiation may be obtained by integrating by parts before differ
entiating whenever the integrand of an integral becomes in
finite at b. 

Murphy's formula, in the form in which it was given origi
nally, is a simple generalization of a formula given by Parseval,* 

IT J _ T 

xf(a + e~ix)]e-ixdx, 

* M. A. Parseval, Mémoires des Savants Étrangers de l 'Institut de France, 
vol. 1 (1805), p. 567. 
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for the root of y = a-{-f(y) which is expressed by means of 
Lagrange's expansion. This formula was extended by Poisson,* 
who showed that 

1 rT 

I F'(a + e~ix) log [l — eixf(a + e-ix)]e~ixdx 
2ir J -v 

= F'(a)f(a)+± ^-[F'(a){f(a)}*] + • • • = F(y) -F(a). 
2! da 

Poisson also mentions that Cauchy had presented to the Acad
emy of Sciences a memoir on the expression by means of definite 
integrals of the roots of equations of any degree. This was prob
ably the unpublished memoir of 1819 mentioned by E. Lindelof 
in his Calcul des Résidus (p. 21). There is, however, a memoir 
with precisely the above title, that was read in 1824 and de
scribed briefly in Cauchy's collected works. 

Murphy's rule, that if Xi is a root of 0(x)=O, Jllf(x)dx is 
equal to the coefficient of 1/x in 

-/(*)log[-~J, 

has been discussed by Whipple,t who also expresses Murphy's 
theorem by a contour integral in practically the form in which 
it is used here except that his contour is a particular one. 
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* S. D. Poisson, Journal de l'École Polytechnique, vol. 12 (1823), p. 497. 
t F . J. W. Whipple, Quarterly Journal of Pure and Applied Mathematics, 

vol. 40 (1909), p. 368. 


