ON A THEOREM OF HIGHER RECIPROCITY*

BY LEONARD CARLITZ

1. Introduction. Let \mathfrak{D} denote the totality of polynomials in an indeterminate, x, with coefficients in a fixed Galois field of order p^{n}. Let P be a primary irreducible element of \mathfrak{D}; then, if A is any polynomial in \mathfrak{D} not divisible by P,

$$
A^{p^{n \nu}-1} \equiv 1 \quad(\bmod P)
$$

where ν is the degree of P. Evidently then

$$
A^{\left(p^{n \nu-1) /\left(p^{n}-1\right)}\right.}
$$

is congruent $(\bmod P)$ to a quantity in the $G F\left(p^{n}\right)$, that is, to a polynomial of degree zero. We define (A / P), the residue character of index $p^{n}-1$, as that element of $G F\left(p^{n}\right)$ for which

$$
\left(\frac{A}{P}\right) \equiv A^{\left(p^{n \nu}-1\right) /\left(p^{n}-1\right)} \quad(\bmod P)
$$

We have then the following theorem of reciprocity, proved in a recent paper. \dagger

If P and Q are primary irreducible polynomials in \mathfrak{D} of degree ν and ρ respectively, then

$$
\begin{equation*}
\left(\frac{P}{Q}\right)=(-1)^{\rho \nu}\left(\frac{Q}{P}\right) . \tag{1}
\end{equation*}
$$

The purpose of this note is to give a simple new proof of this theorem along the lines of Zeller's well known proof of the ordinary quadratic reciprocity theorem. \ddagger
2. Analog of Gauss' Lemma. If A is in \mathfrak{D}, then sgn A denotes the coefficient of the highest power of x which occurs in A; if $\operatorname{sgn} A=1, A$ is primary. Let $R(A / B)$ denote the remainder in the division of A by B. Then the analog in question is furnished by the following theorem.

[^0]Lemma. Let A and P be in \mathfrak{D}, P primary irreducible, and not a divisor of A; then

$$
\begin{equation*}
\left(\frac{A}{P}\right)=\prod_{H} \operatorname{sgn} R\left(\frac{H A}{P}\right) \tag{2}
\end{equation*}
$$

the product extending over all primary H of degree less than the degree of P.

A detailed proof of this lemma is scarcely necessary, but we remark for a later purpose that the proof depends on the fact that the set of polynomials

$$
\left\{\mathcal{R}\left(\frac{H A}{P}\right) / \operatorname{sgn} R\left(\frac{H A}{P}\right)\right\}
$$

is identical (except for order) with the set $\{H\}$, where H runs through the primary polynomials of degree less than the degree of P.
3. Proof of the Theorem. Let $\{b M\}$ denote the set of those polynomials in the set

$$
\left\{R\left(\frac{H Q}{P}\right)\right\}, \quad(\operatorname{deg} H<\nu, \operatorname{sgn} H=1)
$$

with signum equal to b, a fixed quantity in $G F\left(p^{n}\right)$. We write $S_{b}=\{M\}$; evidently the polynomials M are primary. Similarly we put $S_{b}^{\prime}=\{N\}$, where $\{b N\}$ denotes the set of those polynomials in the set

$$
\left\{R\left(\frac{K P}{Q}\right)\right\}, \quad(\operatorname{deg} K<\rho, \operatorname{sgn} K=1)
$$

with signum equal to b.
We assume, as we may without any loss in generality, that $\rho \geqq \nu$. We put

$$
\begin{equation*}
S_{b}^{\prime}=U_{b}+V_{b} \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
U_{b} & =\left\{M \text { in } S_{b}^{\prime} ; \operatorname{deg} M<\nu\right\} \\
V_{b} & =\left\{M \text { in } S_{b}^{\prime} ; \operatorname{deg} M \geqq \nu\right\}
\end{aligned}
$$

Then we begin by proving

$$
\begin{equation*}
U_{b}=S_{-b} . \tag{4}
\end{equation*}
$$

Indeed, let M be any polynomial in S_{b}, that is, let

$$
H Q \equiv b M \quad(\bmod P)
$$

where deg $H<\nu, \operatorname{sgn} H=1$. Evidently there exists a primary K of degree $<\rho$ such that

$$
H Q=b M+K P
$$

But this equality may be written in the form

$$
K P \equiv-b M \quad(\bmod Q)
$$

and since deg $M<\nu$, it follows at once that M is in U_{-b}.
Conversely assume an M in U_{b}. Then there exists a primary K of degree $<\rho$, such that

$$
K P \equiv b M \quad(\bmod Q) ;
$$

since deg $M<\nu$, we infer the existence of a primary (in particular, non-zero) H of degree $<\nu$, such that

$$
K P=b M+H Q
$$

Then it follows as above that M is in S_{-b}. We have therefore set up a $(1,1)$ correspondence between the elements of U_{b} and S_{-b}, thus proving equation (4).

Let us write $\mu(W)$ for the number of elements in a (finite) set W. Then, by Gauss' Lemma and equation (3),

$$
\begin{equation*}
\left(\frac{P}{Q}\right)=\prod_{b \neq 0} b^{\mu\left(U_{b}\right)+\mu\left(V_{b}\right)} \tag{5}
\end{equation*}
$$

the product in the right member extending over all b in $G F\left(p^{n}\right)$ different from zero. By equation (4), the right side of (5) may be written in the form

$$
\prod_{b} b^{\mu\left(S_{-b}\right)+\mu\left(V_{b}\right)}
$$

Now

$$
\begin{equation*}
\prod_{b} b^{\mu\left(S_{-b}\right)}=\prod_{b}(-b)^{\mu(S b)}=\prod_{b}(-1)^{\mu\left(S_{b}\right)} \cdot \prod_{b} b^{\mu\left(S^{b}\right)} \tag{6}
\end{equation*}
$$

but (by the remark in §2)

$$
\begin{equation*}
\sum_{b} \mu\left(S_{b}\right)=\frac{p^{n \nu}-1}{p^{n}-1} \equiv \nu \quad(\bmod 2) \tag{7}
\end{equation*}
$$

and by Gauss' Lemma

$$
\begin{equation*}
\prod_{b} b^{\mu\left(S_{b}\right)}=\left(\frac{Q}{P}\right) \tag{8}
\end{equation*}
$$

we have therefore, by equations (5), . . , (8),

$$
\begin{equation*}
\left(\frac{P}{Q}\right)=(-1)^{\nu}\left(\frac{Q}{P}\right) \prod_{b} b^{\mu\left(V_{b}\right)} \tag{9}
\end{equation*}
$$

It remains to calculate $\mu\left(V_{b}\right)$; evidently we may ignore the case $b=1$.

Let M be in V_{b}, so that for some primary K of degree $<\rho$,

$$
\begin{equation*}
K P \equiv b M \quad(\bmod Q) \tag{10}
\end{equation*}
$$

Since the degree of M is not less than the degree of P, we may put

$$
M=A P+c B, \quad \operatorname{deg} B<\nu
$$

where A and B are primary, and c is in $G F\left(p^{n}\right)$. Then (10) becomes

$$
\begin{equation*}
(K-b A) P \equiv c B \quad(\bmod Q) \tag{11}
\end{equation*}
$$

But

$$
\operatorname{deg} A=\operatorname{deg} M-\operatorname{deg} P<\rho-\nu
$$

and since we are assuming $b \neq 1$, we have necessarily

$$
\operatorname{deg} K \geqq \rho-\nu
$$

Therefore $K-b A$ is primary and

$$
\rho-\nu \leqq \operatorname{deg}(K-b A)<\rho,
$$

and finally B is in U_{c}.
Conversely, let us begin with a B in U_{c} :

$$
\begin{equation*}
K P \equiv c B \quad(\bmod Q), \operatorname{deg} B<\nu \tag{12}
\end{equation*}
$$

Then, if m is an integer such that

$$
\begin{equation*}
\nu \leqq m<\rho \tag{13}
\end{equation*}
$$

and A is a primary polynomial of degree $m-\nu$, we have

$$
(K+b A) P \equiv b A P+c B \quad(\bmod Q)
$$

and if we put

$$
b A P+c B=b M
$$

it is evident that M is in V_{b}. Indeed

$$
\begin{aligned}
\operatorname{deg}(K+b A) & =\operatorname{deg} K \\
\operatorname{sgn}(K+b A) & =\operatorname{sgn} K=1 \\
\operatorname{deg} M & =\operatorname{deg} A P=m \\
\operatorname{sgn} M & =b^{-1} \operatorname{sgn}(b A P+c B)=1
\end{aligned}
$$

To sum up, we have proved that, for fixed $b \neq 1$,
(i) to each element of V_{b} corresponds a single element of some U_{c};
(ii) to each element of U_{c}, c fixed, corresponds $p^{n(m-\nu)}$ elements of V_{b} of degree m, where m is a fixed integer satisfying the inequalities (13).

Evidently (ii) implies that the total number of elements of V_{b} corresponding to a fixed element of U_{c} is precisely

$$
\sum_{m=\nu}^{\rho-1} p^{n(m-\nu)}=\frac{p^{n(\rho-\nu)}-1}{p^{n}-1}
$$

We have therefore that the number of elements in V_{b} is

$$
\begin{equation*}
\mu\left(V_{b}\right)=\frac{p^{n(\rho-\nu)}-1}{p^{n}-1} \frac{p^{n \nu}-1}{p^{n}-1} \tag{14}
\end{equation*}
$$

as follows at once from equations (4) and (7).
Returning to equation (9), we have, since the right member of (14) is independent of b,

$$
\begin{equation*}
\prod_{b} b^{\mu\left(V_{b}\right)}=\left(\prod_{b} b\right)^{\epsilon} \tag{15}
\end{equation*}
$$

ϵ denoting the right side of (14).
Now, by the generalization of Wilson's Theorem for a Galois field,

$$
\prod_{b} b=-1
$$

on the other hand

$$
\epsilon \equiv(\rho-\nu) \nu \equiv \rho \nu+\nu \quad(\bmod 2)
$$

therefore, by (9) and (15),

$$
\left(\frac{P}{Q}\right)=(-1)^{\rho \nu}\left(\frac{Q}{P}\right)
$$

This completes the proof of our theorem of higher reciprocity.
4. Remarks. It should be clear that the case $p=2$ is by no means ruled out in the proof just given. Since in the $\operatorname{GF}\left(2^{n}\right)$, +1 and -1 are the same, the theorem in this case assumes the simpler form

$$
\left(\frac{P}{Q}\right)=\left(\frac{Q}{P}\right), \quad(p=2)
$$

(P / Q) being the residue character of index $2^{n}-1$.
Secondly, if in the notation of §3, we put

$$
W_{b}=\left\{M \text { in } S_{b}^{\prime} ; \operatorname{deg} M \leqq \nu\right\}
$$

and

$$
X_{b}=\left\{M \text { in } S_{b}^{\prime} ; \operatorname{deg} M>\nu\right\}
$$

then it is easy to show that

$$
\prod_{b} b^{\mu\left(X_{b}\right)}=(-1)^{\rho \nu}
$$

or, what amounts to the same thing,

$$
\prod_{b} b^{\mu\left(W_{b}\right)}=\left(\frac{Q}{P}\right)
$$

Duke University

[^0]: * Presented to the Society, December 27, 1932.
 \dagger American Journal of Mathematics, vol. 54 (1932), pp. 39-50.
 \ddagger Monatsbericht der Berliner Akademie, December, 1872.

