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ON PRIMARY NORMAL DIVISION ALGEBRAS 
OF D E G R E E EIGHT* 

BY A. A. ALBERT 

1. Introduction. A normal division algebra A of degree n over 
F will be called primary HA is not expressible as a direct product 
of two normal division algebras B and C, where neither B nor C 
has degree unity. I t is well known that necessarily n=pe, p a 
prime, if A is primary. Moreover, if n = pe, then a sufficient con
dition that A be primary is that A shall have exponentf n. 

I have recently provedj that if A has degree four then A is 
primary if and only if A has exponent four. In the present 
paper I shall prove that there exist primary (cyclic) normal 
division algebras of degree eight but exponent four so that the 
above sufficient condition is actually not necessary. § 

2. Cyclic Fields of Degree Eight.\\ Let F be any non-modular 
field, and let C be a cyclic field of degree eight over F. Then I 
have proved that C = F(x) contains a sub-field F(y) which is 
cyclic of degree four over T^and is defined by 

(1) y2 = v(u - r ) , u2 = r = 1 + €2, 

where p^O, e^O are in F and r = l + €2 is not the square of any 
quantity of F. I have also proved that 

(2) _ VT = tf + £2
2r, - e = W - tfrXW + tf T), 

for £i, £2, rju V2 in F. Conversely I have shown that if (1) and 
(2) are satisfied, then there exists a uniquely defined cyclic field 
C = F(x) of degree eight over F and with F(y) as cyclic quartic 
sub-field. 

* Presented to the Society, February 25, 1933. 
f The exponent p of A of degree n is the least integer such that the direct 

power A p is a total matric algebra, and is a divisor of n. 
% Transactions of this Society, vol. 34 (1932), pp. 363-372. 
§ It seems likely, however, that A of degree p2, p a prime, is primary if and 

only if A has exponent p2. 
|| For proofs of the results of this section see my paper on cyclic fields of 

degree eight which has been offered for publication to the editors of the Trans
actions of this Society. 



266 A. A. ALBERT [April, 

In particular let F contain no quantity i such that i2 = — 1, 
and let also — r be not the square of any quantity of F. Then I 
have proved that the solution of (2)2 is equivalent to the solu
tion of 

(3) - e = X2 - fx\ 

for X~Xi+X2^\ M==Mi+M2 ,̂ i2= — 1, and Xi, X2, Mi> M2 in F, such 
that 

(4) XiX2 = M1M2T, Xiî/2 = l^lVh X2171 = M2̂ 2T, 

while £1 and £2 are determined by 

/c\ y M m "" X l ^ 2 T t M 2 7 ? 1 "" X 2 ? 7 2 2 2 ^ A 
(5) £1 = — , £2 = — — > Vx2 -r}22T?*0. 

We may evidently take X=X2^, M = 0, e= —\2=\2
2 and (3) is 

satisfied. We also have Xirç2 =Mir7i:=^A2=MiM2T = 0, while X2T?I 
= M2̂?2T = 0 implies that 7?i = 0, and 772^0 is arbitrary. Hence, 
from (5), £1 = 0, while £2 = —X2(^2T) - 1 . We have therefore proved 
tha t in this case 

so that , for properly chosen 7j2l we have v = — 1. 

THEOREM 1. Every t in F such that 

(6) e = t\ 7 = 1 + e2, 

awd ± r is WÖ/ /&e square of any quantity of F, defines a cyclic field 
F(x) of degree eight over F with a cyclic quartic sub-field 

(7) y2 = r — u, u2 = r, 

SO /&#£ v—~\. 

3, Ow a Rational Quadratic Form. Let 

(8) ax2 + ft;y2 + cz2 + dw2 

be an indefinite form with integer a, ft, c, d. Then we may define 
(i, j) to be the (positive) greatest common divisor of any two 
integers i and j and may write 

( a = (a, J) • {a, c) • (0, rf) • a0, ft = (6, 0) • (ft, <0 • (ft, d) • fto, 

I c = (c, a) • (c, ft) • (c, d) -Co, rf = (d, a) • (J, ft) • (d, c)-do. 
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If no three of a, b, c, d have a common factor greater than unity, 
it is well known* that (8) is a zero form only if 

(10) — (a, b)(a, d)(b, c)(c, d)aQCo 

is a quadratic residue of every odd prime p dividing either (a, c) 
or (ô, d) for which a0&oCô o is a quadratic residue of p. 

We shall take the t of Theorem 1 to be even so that e is even 
and r is odd. Consider the form 

(11) rx2 - (4r3 - l);y2 - 2r(2re + l)[z2 

which is a zero form if and only if 

(12) x2 - r(4r3 - \)y2 - 2(2re + 1)[*2 

is a zero form. In (12) we write 

a = 1, J = - r(4r3 - 1), c = - 2(2r€ + 1), 

d = 2(2re+ l)(4r3 - 1); 

but 4 r 3 - l = 4 r 2 ( l + € 2 ) - l = ( 2 r e + l ) ( 2 T € ~ l ) + 4 r 2 is evidently 
prime to 2(2re + l ) r . Hence no three of a, b, c, d have a factor in 
common. In fact 

{
a = do = (a, b) = (a, c) = (a, d) — (5, c) = 1, 

(6, J) = (4r3 - 1), 

(c, J) « 2(2re + 1), &o = - T, Co = - 1, do = 1, 

so that , from (10), 

(15) - {a, b)(a, d)(b, c)(c, d)aQc0 = (c, d) = 2(2r€ + 1) 

is a quadratic residue of every odd prime p dividing (ô, d) =h 
= 4r3 —1 such that aoboC0do — T is a quadratic residue of p. But 
if 4r3 — 1 = 0 (mod p), then for the Legendre symbol (r| p)> 

(16) (r\p) = (4r 3 | ^ ) = (l\p) = 1. 

Hence every prime p dividing h has the above property. I t fol
lows that if we write 2g = 2 (2re + 1 ), then 2g must be a quadratic 
residue of A. Hence the Jacobi symbol {2g\ h) = l. But (h\ g) = 1, 
since ^ = (2T€ — 1 ) ^ + 4 T 2 = 4T2 (modg). Then,f 

* See L. E. Dickson, Studies in the Theory of Numbers, p. 71. 
fWe use, of course, the laws (g\ h) • (h \ g) =x(-l)Ca-i)/a-(*-!>/«, (2|fc)« 

(_l)(A2-i)/8} for computing (2g|fc). 

- (4r3 - l)w2]y 

- (4r3 - l)w2] 
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(17) (2g\h) = ( 2 | A)(g| A) = ( - 1)«, 

where 

(18) 

A2 - 1 A - 1 g - 1 A - 1 r 

a = + = [A + 1 + 2g - 2] 
8 2 2 8 

4 r3 _ 2 4r3 + 4re 
= = (2r3 - l)r(r2 + e). 

But 2r3—-1, r, T2 are odd while e = /2 is even. Hence OJ is odd, so 
that (2g\ h) = — 1, a contradiction. 

For every even integer t the integer l + / 4 = r is positive and 
hence — T?^X2 for rational x. Also / = 2£,r = 1 + 16£4 is not identi
cally the square of any polynomial in £. I t follows that the equa
tion X2 = T is irreducible in JR(£) and, by the Hubert Irreduci-
bility Theorem, there exist infinitely many integer values of £ 
for which TT^X2 for any rational x. 

THEOREM 2. There exist infinitely many cyclic fields of degree 
eight over Rfor which the quadratic form (11) is not a zero form. 

4. On Function Fields. In this section we shall obtain some 
quite simple theorems to be used later. Let F be any non-
modular field and y, z, • • • , w be independent indeterminates. 
Then F(y} • • • , w) is defined to be the field of all rational func
tions with coefficients in F of y} • • • , w. Also F [y, • • • , w] is 
defined to be the domain of integrity of all polynomials with 
coefficients in F of y, • • • , w. Suppose that ƒ is in F [y] and 
f—fi'fii where the fi are in 7^^, z]. The degree of ƒ in z is the 
sum of the degrees of / i and ƒ2 in z and is zero. Hence we have 
the following lemma. 

LEMMA 1. If f is in J = F [y ], and is a product of two quantities 
°f F[y> %]> then these quantities are in J. 

Let next ƒ be in ƒ and let f\ and ƒ 2 be in K [y ], where K = F(z). 
Then we may write 

i - gl i - g2 

h - —> y2 - —, 
hi h2 

where gi is a polynomial in y with coefficients in F[z]} hi is in 
F[z] and has no factor in F[z] which divides all the coefficients 
of gi. But if ƒ = / r f 2, then 
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^ 2 

hih2 

is a polynomial in y with coefficients in F so that hi divides g2 

and hi divides gi. Hence gi = Â2&1, g2 = Â1&2, so that 

ƒ = / i / 2 = {hh~l){hh), h = V A * 

By Lemma 1, &i and £2 have coefficients in F. 

LEMMA 2. Let f be a polynomial in y with coefficients in F. 
Then, if y and z are indeterminates, ƒ is reducible in F(z) if and 
only iff is reducible in F, 

By induction the above result may be immediately extended 
to the case of an arbitrary number of variables yi and inde
terminates Zi. Also, an application of Lemma 2 to the Galois re
solvent of any equation without multiple roots yields the fol
lowing theorems. 

THEOREM 3. Letf{x) = 0 have coefficients in F and group G f or 
F. Then, if z is an indeterminate, the group of f{x) = 0 for F(z) is 
also G, 

THEOREM 4. Let W = F(x) be an algebraic field over F with G as 
its group of automorphisms. Then W = F(x, z) is an algebraic 
field over F{z), with the same degree and group G as W, for any 
indeterminate z, 

5, On a Quadratic Form over R(z), We let R be the field of all 
rational numbers, z be a parameter, K = R(z), J = R[z], Let 
R(x) be a cyclic field of degree eight over R chosen so that (11) 
is not a zero form. By Theorem 4 the field K(x) is cyclic of de
gree eight over K. Consider the form 

(19) P(Xx, • • • , X6) s Xi2r + (\2
2 - \3

2r)i3 ~ X4
2T - (X52 - X6

2
7)5, 

in the variables Xi, • • • , XÔ in K, where, since *>= — 1, 

(20) T = / 3 2
2 r ~ f t S /3 = 2ftT, 

i = 2vT(l32e - ft)ft = - 2rft(fte - ft). 

Write j3i= — z, /32 = 2T3 and, since /3, S, 7 have the factor z2, the 
formP(Xi, • • • ,X6) becomes 
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C ö(Mi, * • * , Me) = MI2T - (4r 3 - 1)/X22 

(21) I - 2r(2re + 1)[M3
2 - (4r3 - 1 W ] 

V -2 , (4r 3 - l ) fc t f T -y) , 

where M I = ^ I > M2=X4 ,̂ M3=XÖ2, M4=X6S2, JUÖ=X22, jLt6=X32. Evi
dently (19) is a zero form if and only if (21) is a zero form. Also 
(21) vanishes for values not all zero of the ju» in K if and only 
if it vanishes for /* i not all zero in / . 

Let us write (21) in the form <2 = 0 in s, that is, 

(22) MI2T - (4r3 - 1 W - 2r(2r€ + 1) [MS2 - (4r3 - 1)M4
2] 

^ 2 z ( 4 r 3 - 1)GU5 2 T-M6 2 ) , 

and designate the left member by S. Every term OL^? of S has 
rational a» and even degree in z. Hence S has odd degree if and 
only if it has leading coefficient 

xfr - (4r3 - \)xi - 2T(2T€ + l)|>3
2 - (4r3 - l)xf] 

formally equal to zero for xi, • • • , x± not all zero in R. This 
is contrary to our choice of R(x). Hence 5 has eyen degree, 
5 = 0 only if M I = • • • =v* = 0. But 5 = r = 2s(4r3~l)(M52r-M62), 
so that T has even degree. Hence fxir—fxi has odd degree and 
thus has formal leading coefficient zero. But this coefficient is 
x6

2 r — xi, which must be zero for x$ and x§ in R and not both 
zero unless T = 0. But this is impossible by our choice of r. 
Hence T = 0, 5 = 0, a contradiction. For we have proved now 
that 5 and T are both zero only when all the pi are zero. 

THEOREM 5. There exist cyclic fields of degree eight over Kfor 
which (19) does not vanish for Xi, • • • , X6 in K and not all zero. 

6. A Type of Normal Division Algebra. Let F be any non-
modular field. I t is well known that every normal simple al
gebra of degree two over F is an algebra 

(23) Q(a,p) = ( l , i , i , y ) , 

where a ^ O , JST^O are in F. Let Z = F(d) be a cyclic field of de
gree four over F, 

(24) d2 = v{u - T), U* = r = 1 + €2, 

where PT*0 is in F, e in JF\ Define 
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(25) D = (Z, S, 7) 

to be the cyclic algebra 

(26) (dv?0, c'a = a&et, (i, i = 0, 1, 2, 3), 

where if a = a(d!) is in Z, then 

<*s* = a[fl'(d)], 6(d) = d 

(27) 
02(x) = _ ^ 03^) = _ 0 ( ^ 04(^) = ^ 

I have proved that if D has exponent p < 4, then 

for |8i and /?2 in F, and conversely. I have also shown* that when 
p < 4 

(28) D = Q(a, p) X 0(7, 8) 

is a direct product of two generalized quaternion algebras, where 

(29) a = r, fi = 2/3lT, 7 - &2r - ft2, 8 = 2*rft(fo€ - A ) . 

I have also proved that if (28) is satisfied, then D is a division 
algebra if and only if (19) is not a zero form. Hence, if F — R(z), 
we have already proved that D is a division algebra of exponent 
two. We therefore have the following theorem. 

THEOREM 6. There exist cyclic fields of degree eight over K — R{z) 
with corresponding sub-fields Z of degree four over K such that K 
contains quantities y in F for which D = (Z, 5, 7) is a division 
algebra of exponent two. 

The above theorem provides the first proof f of the existence 
of a non-primary normal division algebra of degree four over a 
function field R(z), the simplest previous example being that of 
an algebra over R(y, z), where y and z are two independent in-
determinates. 

7. Primary Algebras of Degree Eight. Let A be a normal di
vision algebra of degree p6 over F, p a prime. I have proved! 
that 

A* = M*-1 X MPXAP = MXAP, 

* This Bulletin, vol. 37 (1931), pp. 301-312, Theorems 3, 4. 
t It is not difficult, however, to give a simpler proof for the case p>0. 
t See Theorem 7 of my paper Algebras of degree 2«, etc., Annals of Mathe

matics, vol. S3 (1932), pp. 311-318. 

= * ) • 
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where M = M0
P~1XMP, M0 is a total matric algebra of degree 

pe, Mp is a total matric algebra of degree pf>l, Ap is a normal 
division algebra of degree pe~f ^ 1. Also the exponent p of A has 
the value p=pr

1 where r^e. Since p=ppu we have piz=pr~l
i 

Ap=Appi = MpiX(Ap)
pi is a total matric algebra. Hence Ap

pi is 
a total matric algebra. Conversely, if p0 is the exponent of^p , 
then Appo = Mp<>XAp

po is a total matric algebra. We thus have 
p^ppo, ppi^ppoj P=ppi = pPo, and we have the following fact. 

LEMMA 3. The exponent p of A is ppo, where po is the exponent 
of Ap. 

Let p = 2, e = 3, so that A2 = (M0X M2) XA2. If A=BXC is 
non-primary, where B may be taken to have degree four, C de
gree two, then A2 = B2XC2 = (LXL2XB2)X(KXK2XC2). But 
K2 has degree two, C2 has degree unity, C2 is a total matric 
algebra. Hence A2 = MoXQ, where M0 is a total matric algebra 
and Q is a normal simple algebra of degree two. 

LEMMA 4. Let A be a non-primary normal division algebra of 
degree eight. Then A2 = MoX Q, where M0 is a total matric algebra 
and Q is a normal simple algebra of degree two. 

We now let A be any normal division algebra of degree eight. 
Then A2 = MX A 2l where M is a total matric algebra and ^42 is 
a normal division algebra. If ^42 has degree unity or two, then A 
has exponent two or four by Lemma 3 and may or may not be 
primary. But, by Lemma 3, if ^42 has degree four then A is pri
mary and has exponent 2s where s is the exponent of A 2. 

THEOREM 7. Let A be a normal division algebra of degree eight 
over F so that 

A2 = M X A2, 

where M is a total matric algebra and A2is a normal division al
gebra of degree 2*5*4. Then A has exponent two or four according 
as t = 0, 1 and it is not yet known whether A may be primary. But 
if t = 2, then A is primary and has exponent 2s, where s is the ex
ponent of A2. 

By Theorems 6, 7 we have the following result. 

THEOREM 8. There exist primary normal division algebras of de
gree eight and exponent four. 
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