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ON PRIMARY NORMAL DIVISION ALGEBRAS
OF DEGREE EIGHT*

BY A. A, ALBERT

1. Introduction. A normal division algebra 4 of degree # over
F will be called primary if A is not expressible as a direct product
of two normal division algebras B and C, where neither B nor C
has degree unity. It is well known that necessarily n=2¢, p a
prime, if 4 is primary. Moreover, if #n = p¢, then a sufficient con-
dition that 4 be primary is that 4 shall have exponentt #.

I have recently provedi that if 4 has degree four then 4 is
primary if and only if 4 has exponent four. In the present
paper I shall prove that there exist primary (cyclic) normal
division algebras of degree eight but exponent four so that the
above sufficient condition is actually not necessary.§

2. Cyclic Fields of Degree Eight.” Let F be any non-modular
field, and let C be a cyclic field of degree eight over F. Then 1
have proved that C= F(x) contains a sub-field F(y) which is
cyclic of degree four over F and is defined by

(1) Y =wu—r) = =148

where »7#0, €0 are in F and 7=1+¢? is not the square of any
quantity of F. I have also proved that

(2) —vr=E + &7, —e= (n? — 77227')(1512 + 5227):

for &, &£, 71, 2 in F. Conversely I have shown that if (1) and
(2) are satisfied, then there exists a uniquely defined cyclic field
C = F(x) of degree eight over F and with F(y) as cyclic quartic
sub-field.

* Presented to the Society, February 25, 1933.

t The exponent p of 4 of degree » is the least integer such that the direct
power A” is a total matric algebra, and is a divisor of #.

1 Transactions of this Society, vol. 34 (1932), pp. 363-372.

§ It seems likely, however, that 4 of degree #2, p a prime, is primary if and
only if 4 has exponent p2.

|| For proofs of the results of this section see my paper on cyclic fields of
degree eight which has been offered for publication to the editors of the Trans-
actions of this Society.
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In particular let F contain no quantity ¢ such that 2= —1,
and let also —7 be not the square of any quantity of F. Then I
have proved that the solution of (2), is equivalent to the solu-
tion of

3) — ¢ =N — u’r,

for N=N\1+Not, p=p1+uot, 1= —1, and Ay, Ng, g1, pe in F, such
that

4 Ahg = paper, Az = g, Nan1 = pgnet,

while £ and &, are determined by

O aotmIMT s
ne — NeT ne — N7
We may evidently take A=Ay, u=0, e= —N2=N\ and (3) is
satisfied. We also have Nns=uim =AN2=pupsr =0, while Aomy
=puaner =0 implies that 7,=0, and 7,70 is arbitrary. Hence,
from (5), £ =0, while £&s= —N\y(n27) . We have therefore proved
that in this case

— v =t = [e(nr)t],
so that, for properly chosen 7, we haver = —1.
THEOREM 1. Every tin F such that
6) e=1% r=14¢,

and + 7 is not the square of any quantity of F, defines a cyclic field
F(x) of degree eight over F with a cyclic quartic sub-field

@) y=7—u, u? =r,
sothaty = —1.

3. On a Rational Quadratic Form. Let
(8) ax? + by? + cz® + dw?

be an indefinite form with integer a, b, ¢, d. Then we may define
(3, ) to be the (positive) greatest common divisor of any two
integers ¢z and j and may write

(9) { a = (‘17 b)'(a: 5)'(“) d)'a% b= (b, d)'(b, G)'(b: d)‘bm
¢ = (C, a)~(c, b)'(C, d)'CO) d = (d’ a’)‘(d> b)(d) C)‘do.
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If no three of a, b, ¢, d have a common factor greater than unity,
itis well known* that (8) is a zero form only if

(10) - ((1, b)(a, d)(b; C) (C; d)doco

is a quadratic residue of every odd prime p dividing either (e, ¢)
or (b, d) for which aebecedo is a quadratic residue of p.

We shall take the ¢ of Theorem 1 to be even so that € is even
and 7 is odd. Consider the form

(11) 7o — (473 — Dy? — 2727 + D[22 — (4% — Dw?],
which is a zero form if and only if
(12) 2 — 7(47% — 1)y — 2(2re + 1)[2* — (4% — 1)w?]
isa zero form. In (12) we write
a=1,b=—74r—-1), c= —2Q2re + 1),
d = 2(27e + 1)(dr% — 1);

but 47 —1=472(14¢?) —1=(27e+1)(27e—1) 4472 is evidently
prime to 2(27e¢-1)7. Hence no three of a, b, ¢, d have a factor in
common. In fact

(13)

(b,d) = (473 — 1),

(6,d) = 2Q2re+ 1), bo= — 7, co= — 1, do = 1,
so that, from (10),
(15) = (e, b)(a, d)(b, ¢)(c, d)acco = (¢, d) = 2(27e + 1)

is a quadratic residue of every odd prime ¢ dividing (b, d) =h
=47%—1 such that a¢becodo=7 is a quadratic residue of p. But
if 478 —1=0 (mod p), then for the Legendre symbol (r| ),

(16) (r|p) = dr*| p) = (1] p) = 1.

Hence every prime $ dividing % has the above property. It fol-
lows that if we write 2g=2(27¢+1), then 2g must be a quadratic
residue of . Hence the Jacobi symbol (2g| k) =1. But (hl g2 =1,
since h = (2re—1)g+4r2=472 (mod g). Then,}

* See L. E. Dickson, Studies in the Theory of Numbers, p. 71.
t We use, of course, the laws (glh)~(h]g)=(—1)‘0‘1)/2'(’°‘1)/2, (2|h)=
(—1)®-v18, for computing (2g| k).

a = G = (a)b) = (d,C) = (d7d) = (b,C) = 11
(14){
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7 gl h) = 2| B)(g| B) = (- 1),
where

( -1 h—1g—1 h—1

Ja— 2 + T, TR [h 4+ 1+ 2¢ — 2]
(18)

| 473 — 2 473 4 4re

[ = 5 . 1 = (278 — Dr(z2 4+ ¢).

But 272 —1, 7, 72 are odd while e=#? is even. Hence « is odd, so
that (2gl k) = —1, a contradiction.

For every even integer ¢ the integer 14-# =7 is positive and
hence —7#x?for rational x. Also t=2£,7=14+16£* is not identi-
cally the square of any polynomial in £. It follows that the equa-
tion x2=7 is irreducible in R({) and, by the Hilbert Irreduci-
bility Theorem, there exist infinitely many integer values of &
for which 7#x?2 for any rational x.

THEOREM 2. There exist infinitely many cyclic fields of degree
eight over R for which the quadratic form (11) is not a zero form.

4. On Function Fields. In this section we shall obtain some
quite simple theorems to be used later. Let F be any non-
modular field and y, 2z, - - -, w be independent indeterminates.
Then F(y, - - -, w) is defined to be the field of all rational func-
tions with coefficients in Fof y, - - -, w. Also F [y, - - -, w] is
defined to be the domain of integrity of all polynomials with
coefficients in F of v, - - -, w. Suppose that f is in F[y] and
f=fifs, where the f; are in F[y, z]. The degree of f in z is the
sum of the degrees of f, and f. in 2 and is zero. Hence we have
the following lemma.

LEMMA 1. If fisin J=F[y], and is a product of two quantities
of Fly, 2], then these quantities are in J.

Let next f be in J and let f; and f, be in K [y ], where K = F(z).
Then we may write

g1 82
fl - kl’ f2 = h2,

where g; is a polynomial in y with coefficients in F[z], &, is in
F[z] and has no factor in F[z] which divides all the coefficients
of g;. Butif f=f;- f,, then
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8182
f_mm

is a polynomial in y with coefficients in F so that %, divides g,
and i, divides g1. Hence g1 =haki, g2 =hik2, so that

[ = fife = (k™) (k:2b), = I/ h,.
By Lemma 1, k, and & have coefficients in F.

LeMMA 2. Let f be a polynomial in y with coefficients in F.
Then, if y and z are indeterminates, f is reducible in F(z) if and
only if f is reducible in F.

By induction the above result may be immediately extended
to the case of an arbitrary number of variables y; and inde-
terminates 2;. Also, an application of Lemma 2 to the Galois re-
solvent of any equation without multiple roots yields the fol-
lowing theorems.

THEOREM 3. Let f(x) =0 have coefficients in F and group G for
F. Then, if z is an indeterminate, the group of f(x) =0 for F(2) is
also G.

THEOREM 4. Let W = F(x) be an algebraic field over F with G as
its group of automorphisms. Then W’'=F(x, z) is an algebraic
field over F(3), with the same degree and group G as W, for any
indeterminate 2.

5. On a Quadratic Form over R(z). We let R be the field of all
rational numbers, z be a parameter, K=R(z), J=R[z]. Let
R(x) be a cyclic field of degree eight over R chosen so that (11)
is not a zero form. By Theorem 4 the field K (x) is cyclic of de-
gree eight over K. Consider the form

(19) P(My =+ -, 0) = M7+ (A — A27)B — A2y — (A% — ME)3,
in the variables\;, - - - ,N¢in K, where, sincev = —1,

Y = B22T - 612) B = 2.317)
2v7(Bee — B1)B1L = — 27P1(Bae — Bu).

Write 1= —3, 82=272 and, since 3, §, v have the factor 22, the
form P(\1, -+ -, N\¢) becomes

(20)
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(Q("‘l’ cee, ue) = pPr — (47 — Dpg
21) 1 — 2r(21e + 1) [ug — (47° — Dpy?]
- 2:(478 - 1)(/»"527 _;”62):

where M1=)\1, Mo =)\4Z, M3 =)\5Z, Mae =)\522, M5=)\2Z, Me =)\3Z. Evi-
dently (19) is a zero form if and only if (21) is a zero form. Also
(21) vanishes for values not all zero of the u; in K if and only
if it vanishes for u; not all zero in J.

Let us write (21) in the form Q=0in 2, that s,

(22) w7 — (4% — Dud — 27(27e + D [ud — (4r° — Dug?]
= 23(47° — D(udr — ud),
and designate the left member by S. Every term a;u? of S has

rational a; and even degree in 2. Hence .S has odd degree if and
only if it has leading coefficient

ar — (41 — Dag — 2r2re + 1) [a@ — 4% — Dag]

formally equal to zero for x1, - - -, x4 not all zero in R. This
is contrary to our choice of R(x). Hence .S has eyen degree,
S=0onlyifui= - -+ =u=0. ButS=T=2z2(47—1) (ud7—uéd),

so that T has even degree. Hence uf7—pué has odd degree and
thus has formal leading coefficient zero. But this coefficient is
x27 —x¢?, which must be zero for x5 and x¢ in R and not both
zero unless 7'=0. But this is impossible by our choice of 7.
Hence T'=0, S=0, a contradiction. For we have proved now
that S and T are both zero only when all the y; are zero.

THEOREM 5. There exist cyclic fields of degree eight over K for
which (19) does not vanish for Ny, - - - , Nein K and not all zero.

6. A Type of Normal Division Algebra. Let F be any non-
modular field. It is well known that every normal simple al-
gebra of degree two over Fis an algebra

(23) e, ) = (1, 4, 4, i),

where a%0, 30 are in F. Let Z = F(d) be a cyclic field of de-
gree four over F,

(24) Z=vu—1),u=7=14¢,

wherev#0isin F, ein F. Define
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(25) D=(zS,7)
to be the cyclic algebra
(26) (de?), ela = aS¢i, (i,7=0,1,2,3),

where if a =a(d) is in Z, then

o = al6¥(d)], 6(d) = d(u_ﬂ) ’

€

(27)
0%(x) = — x, 03(x) = — 6(x), 04(x) = =x.

I have proved that if D has exponent p <4, then
v = BT — B2,

for B; and B;in F, and conversely. I have also shown* that when
p<4

(28) D = Q(a, B) X Q(y, 9)
isa direct product of two generalized quaternion algebras, where
(29) a =1, 8 =28y, v =BT — B2, § = 2v7B1(Bze — B1).

I have also proved that if (28) is satisfied, then D is a division
algebra if and only if (19) is not a zero form. Hence, if F=R(z),
we have already proved that D is a division algebra of exponent
two. We therefore have the following theorem.

THEOREM 6. There exist cyclic fields of degree eight over K = R(3)
with corresponding sub-fields Z of degree four over K such that K
contains quantities vy in F for which D= (Z, S, ) is a division
algebra of exponent two.

The above theorem provides the first prooft of the existence
of a non-primary normal division algebra of degree four over a
function field R(2), the simplest previous example being that of
an algebra over R(y, 2), where y and 2 are two independent in-
determinates.

7. Primary Algebras of Degree Eight. Let A be a normal di-
vision algebra of degree p° over F, p a prime. I have proved}
that

AP = MP Y X M, X Ap =M X 4,,
* This Bulletin, vol. 37 (1931), pp. 301-312, Theorems 3, 4.
t It is not difficult, however, to give a simpler proof for the case » >0.

1 See Theorem 7 of my paper Algebras of degree 2¢, etc., Annals of Mathe-
matics, vol. 33 (1932), pp. 311-318.
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where M =M X M,, M, is a total matric algebra of degree
p°, M, is a total matric algebra of degree p’>1, 4, is a normal
division algebra of degree p¢=/ = 1. Also the exponent p of 4 has
the value p=p", where r<e. Since p=pp;, we have p;=p""1,
Ar=4rn= M X (A4,)" is a total matric algebra. Hence 4, is
a total matric algebra. Conversely, if pois the exponent of 4,,
then APPo= M*roX A,% is a total matric algebra. We thus have
P=Ppo, PP1= Ppo, p=Pp1=ppo, and we have the following fact.

LeEMMA 3. The exponent p of A is ppo, where po is the exponent
of 4,.

Let p=2,e=3,s0 that A2=(MX M) XAs. If A=BXC is
non-primary, where B may be taken to have degree four, C de-
gree two, then 42=B2X C?2= (L X L:XB2) X (K XK:XC(Cs). But
K, has degree two, C. has degree unity, C? is a total matric
algebra. Hence 42= MXQ, where M, is a total matric algebra
and Q is a normal simple algebra of degree two.

LEMMA 4. Let A be a non-primary normal division algebra of
degree eight. Then A*= M, X Q, where M, is a total mairic algebra
and Q is a normal simple algebra of degree two.

We now let 4 be any normal division algebra of degree eight.
Then A2= M X A., where M is a total matric algebra and 4, is
a normal division algebra. If 4, has degree unity or two, then 4
has exponent two or four by Lemma 3 and may or may not be
primary. But, by Lemma 3, if 4, has degree four then 4 is pri-
mary and has exponent 2s where s is the exponent of 4 ,.

THEOREM 7. Let A be a normal division algebra of degree eight

over F so that
A? = M X A,

where M is a total matric algebra and A, is a normal division al-
gebra of degree 2!<4. Then A has exponent two or four according
as t=0, 1 and it is not yet known whether A may be primary. But
if t=2, then A is primary and has exponent 2s, where s is the ex-
ponent of A,.

By Theorems 6, 7 we have the following result.

THEOREM 8. There exist primary normal division algebras of de-
gree eight and exponent four.

THE UNI1VERSITY OF CHICAGO



