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CONVEX DOMAINS AND LINEAR COMBINATIONS 
OF CONTINUOUS FUNCTIONS* 

BY I. J. SCHOENBERG 

1. Introduction. Dines1 Problem. Let there be given n real, 
continuous and linearly independent functions 

(1) <t>i(x), 02(*), • • • , </>nO)> (a ^ x ^ b), 

which we may interpret as cartesian coordinates of an arc of 
curve r in the w-space 5W. Let K = K(Y) denote the smallest 
closed convex domain in Sn containing the arc T. The following 
lemma is due to F. Riesz.f 

LEMMA 1. A point X = (xi, x2, • • • , xn) belongs to K if and only 
if its coordinates can be represented in the form 

(2) xk = I < ^ 0 ) # 0 ) , O = 1, 2, • • • , n), 
J a 

where ^(x) is monotonie and non-decreasing in [a, b], with 
^ (a )=0 ,^ (&) = l.^ 

A characterization of the points which are interior to K is 
given by the following lemma. 

LEMMA 2. A point X — (x) is an interior point of K if and only 
if its coordinates can be represented in the form 

(3) xk = I p(x)<l>k(x)dx, (k = 1, 2, • • • , n), 
J a 

where p{x) is continuous% and positive in [a, b] and fap(x)dx = 1. 
This lemma is proved in §4 below. I wish to show now how by 

* Presented to the Society, April 14, 1933. 
t F . Riesz, Annales de l'École Normale, (3), vol. 28, pp. 56-57. I t can be 

derived immediately from some fundamental properties of convex domains to 
be found in Chapter I of C. Carathéodory's article Über den Variabilitats-
bereich der Fourierschen Konstanten von positiven harmonischen Funktionen, 
Rendiconti di Palermo, vol. 32 (1911), pp. 193-217. The reader is referred to 
this place for all the information about convex domains which is used in this 
note. 

{ Concerning this assumption on p(x) see the concluding remark at the end 
of this note. 
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means of these lemmas some interesting questions about linear 
combinations of the functions (1) can be readily answered. We 
start with the following problem stated and solved by L. L. 
Dines.* 

Under what conditions does every real linear combination 

(4) $(x) = ai0i(*O + arf>%(x) + • • • + M>nO), 

change sign in the interval [a, b]? 
That this should be so, it is obviously necessary and sufficient 

that every hyperplane 

(5) 7r(x) = diXi + #2#2 - ( - . . . + anXn = 0, (!>*2 > o), 

passing through the origin O of Sn shall cutf the arc T, that is, 
that the origin 0 = (0, 0, • • • , 0) be an interior point of K. 
From this remark and Lemma 2, we immediately derive the 
following answer. 

THEOREM 1 (L. L. D I N E S ) . Every linear combination (4) will 
change sign in [a, b ] if and only if there exists a positive continuous 
function p(x) with 

ƒ. 
b 

p{x)<t>k(x)dx = 0, (k = 1, 2, • • • , n). 

By similar reasons every $(x) will vanish somewhere in [a, b] 
if and only if the origin O is a point of K. Hence Lemma 1 gives 
the following result. 

THEOREM 2. Every linear combination (4) will vanish some­
where in [a, b] if and only if there exists a monotonie function 
\f/(x) not identically constant in [a, b] with 

ƒ <S>k{x)dypk (x) = 0, (k = 1, 2, • • • , n). 

* L. L. Dines, A theorem on orthogonal functions with an application to in­
tegral inequalities, Transactions of this Society, vol. 30 (1928), pp. 425-438. 
See also L. L. Dines, Annals of Mathematics, (2), vol. 28 (1926), pp. 393-395, 
and N. H. McCoy, this Bulletin, vol. 36 (1930), pp. 878-882. 

f That is to say, have points of the arc r on both of its sides. 
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2. Generalization of Dines1 Problem, A recent article of J. 
Favard* suggests the following generalization of the problem 
of Dines: For what constants c\, c2, • • • , c», (2c&2 >0 ) , does every 
linear combination (4), whose coefficients satisfy the relation 

(6) aid + a2c2 + • • • + ancn = 0 , 

change sign in [a, b]? 
An answer to this question is given in the following theorem. 

THEOREM 3. Every linear combination (4), whose coefficients 
satisfy the relation (6), changes sign in [a, b] if and only if the 
system of equations 

(7) I p{x)4>k{x)dx = cky (k = 1, 2, • • • , n), 
J a 

has a continuous solution p{x) F^O in [a, 6].f 

The proof of this theorem requires the following additional 
geometric lemma whose proof we postpone to the end of this 
note (§5). 

LEMMA 3. (a) If a straight line A of Sn has no point in common 
with K, then we can pass through A a hyper plane ir which also has 
no point in common with K, that is, w is a bound of K. (b) If A 
and K have points in common none of which is interior to K {we 
may call A a line of support of K), then we can pass through A a 
hyper plane of support w of K. 

Let us return to the proof of Theorem 3. Let A denote the 
straight line joining the point C= (ci, c2y • • • , cn) to the origin 0. 
Lemma 3 gives the following geometric criterion: Every $(#), 
satisfying (6), will change sign in [a, b] if and only if A contains 
an interior point P of K. Indeed, if A contains such a point P , 
then every hyperplane (5) through A will cut the arc I \ i.e., 
every <Ê>(x) satisfying (6) will change sign in [a, b]. Conversely, 
if A contains no point interior to K, then Lemma 3 shows that 
there exists a linear combination <£(#), satisfying (6), which 

* J. Favard, Sur les zéros réels des polynômes, Bulletin de la Société Mathé­
matique, vol. 59 (1931), pp. 229-255. 

t If every <£(#) changes sign in [a, b], irrespective of (6), then system (7) 
has a required solution p(x) for any constants ch c2, • • • , cn. Indeed, the origin 
O is then interior to K. 
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does not change sign in [a, b]. Moreover, if A contains interior 
points of K, it will also contain such a point P^O. The co­
ordinates of P expressed in the form (3) and multiplied by the 
ratio OC/OP^O), yield the characteristic representation (7) 
of the coordinates of C. Similarly, Theorem 2 is generalized by 
the following theorem. 

THEOREM 4. We assume that not every linear combination (4) 
vanishes somewhere in [a, b]. Under this assumption every $(#), 
whose coefficients satisfy (6), will vanish somewhere in [a, b] if 
and only if the system 

(8) J 4>k{x)d\l/{x) = ck, (k = 1, 2, • • • , n), 

has a monotonie solution yp{x) not identically constant in [a, &]. 

Indeed, the first assumption of this theorem means that O is 
an exterior point of K. Then relation (6) implies that $(x) van­
ishes in [a, b] if and only if the straight line A passing through 
O and C has at least one point P in common with K (Lemma 3, 
case (a)). The coordinates of P expressed in the form (2), and 
multiplied by the ratio OC/OP^O), yield the characteristic 
representation (8) of the coordinates of C. It is easy to see geo­
metrically that Theorem 4 fails to be always true if we drop the 
assumption of its first sentence. 

3. Infinite Sequences of Functions. Let there be given an in­
finite sequence of linearly independent continuous functions 

(9) </>oO) EE 1, <j>x(x)> 0 2 ( a ) , • • • , (a S x Sb), 

and let 

(10) £o > 0, Ci, C2, • ' • , 

be a given sequence of real constants. Again it is suggested by 
Favard's paper that we ask the following question. For what 
sequences (10) does, for every n, a linear combination 

(11) $(x) = a0<l)o(x) + aX(j>i{x) + • • • + an<j>n(x), 

whose coefficients satisfy the relation 

(12) a0Co + aid + • • • + a>nCn = 0, 

always vanish, at least once, in [a, b]? 
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We shall prove the following theorem. 

THEOREM 5. For every n, a linear combination (11), whose co­
efficients satisfy (12), will always vanish at least once in [a, b] if 
and only if the system 

(13) f **(*)#(*) = ck, (* = 0, 1, 2, • • • ) 
J a 

admits a monotonie solution \f/(x). 

The condition of this theorem is obviously sufficient. Its ne­
cessity is readily derived from Theorem 4 and a well known 
theorem of Helly.* 

Indeed, on account of Theorem 4, the finite system 

l 
b 

4>k(x)d\f/n(x) = Ck, (k = 0, 1, 2, • • • , n), 

admits, for every n, a monotonie solution ff t(x), with \[/n(a) = 0. 
By Helly's theorem there exists a subsequence \f/ni(x) which con­
verges to a monotonie solution yp(x) of the system (13). 

For the special sequence of functions 

(14) 0o(ff) = 1, (jy^x) = X, (j>2{x) = X2, • • • , 

Theorem 5 was given by Favard (loc. cit. p. 244). For this par­
ticular sequence (14), Favard proved Theorem 5 also when one 
or both of the limits a and b are infinite. Our method can not 
cover these cases, since Theorem 4, on which it is based, fails 
to be true if a = —<x>, & = -f-co, n^3, for example, if c0 = 1, 
Ci = C2= ' • • =Cn_i = 0, C n = l . t 

4. Proof of Lemma 2. The point X = (x) given by (3) is in­
terior to K. Indeed, assuming for the moment that X is on the 
boundary of K, there is no loss of generality (suitable change 

* E. Helly, Sitzungsberichte der Wiener Akademie, vol. 121 Ha (1912), 
p. 286 and pp. 288-9. 

t Indeed, the polynomial <£(#) =a 0 +ai#+ • • • -\-anx
n necessarily has a real 

root if ao-\-an = 0, while the corresponding system 

# = 1, I xdf = J xH\{s = • • • = I *'»-i<ty = 0, I xn<ty = 1 
-00 V — 00 *^ —00 *•' —00 *J —00 

has no monotonie solution \//(x). 
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of axes) if we assume that the hyperplane #i = 0 is a plane of 
support of K, that is 

4>\{%) ^ 0 for a ^ x S b and I p(x)<f>i(x)dx = 0. 
J a 

These last conditions, however, are in contradiction with 
p(x)>0 and </>i(x) ^ 0 in [a, b]. The sufficiency of the condition 
of Lemma 2 is thus established. 

Let a — 0, 6 = 1, and let K0 be the totality of points X = (x) 
representable in the form (3) with p(x) continuous and positive 
in [0, 1 ] and fQp(x)dx = 1. The point set K0 is obviously convex. 
We shall prove now that every point P = (pi, p2, - • - , pn) of K 
is a limit point of the point set K0. Indeed, by Lemma 1 we may 
write 

(15) pk = I < ^ 0 ) # 0 ) , \P(x) monotonie, ^(0) = 0, \p(l) = 1, 
J o 

for k = l, 2, • • • , n. Consider now the polynomial of degree 
m ( > l ) 

m l 1 1 1 ) 
(16) Pm(x) = < Bm(f, x) + — x™ (1 - x)m + — > , 

ra + 2 l m m m) 
where 

(17) Bm&, x) = ƒ > ( — Y ^ V C 1 " x)m~M 

M=o \m/\fi/ 

is the mth Bernstein polynomial of \//(x)* From 

m 
Priix) = {-m~) m + 2 K M==0 

K ) \\ r^1 " oc)m~^~1 + x™-1 + (1 - x)™-1^ , 

we see that 

(18) Pj(x) >0, 

* S. Bernstein, Communications Charkow Mathematical Society, (2), vol. 
13 (1912), pp. 1-2. 
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for O ^ x ^ l . Moreover, (16) and (17) give 

(19) Pm(0) = 0, Pm( l ) = 1. 

Finally, a fundamental convergence property of the polynomials 
of Bernstein shows that 

(20) lim Pm(x) = ifr(x) 

for every value of x where \f/(x) is continuous. The point 

X(m): Xk(m) = I <f>k(x)PJi(x)dx, (k = 1, 2, • • • , n), 
J o 

on account of (18) and (19), belongs to the point set K0; and, by 
(20) and Helly's theorem, we have X<m)—»P as m—*oo. 

If Q is a fixed interior point of K, then Q is also interior to a 
suitable polyhedron with n + 1 vertices P0 , Pi , • • • , Pn, all of 
which belong to K. By our last result we can find n + 1 points 
X0, Xi, - • • , Xn of i£o such that X;,(i = 0, 1, • • • , n)1 is arbi­
trarily close to Pi. For such a sufficiently close approxima­
tion the point Q will clearly be a point of the polyhedron 
X0Xi • • • Xn, hence, a point of K0, since i£o is convex. This 
concludes the proof of Lemma 2. 

5. Proof of Lemma 3. (a) Let A have no common point with 
K. Let AB be the shortest distance from A to X", the point A 
belonging to A and B to K. Then A is perpendicular to the seg­
ment AB so that the plane 7r, perpendicular to AB at A, will 
contain the straight line A. This plane T has no point in common 
with K (see Carathéodory, loc. cit. p. 198). 

(b) Let A be a line of support of K. Let 7 be a fixed interior 
point of K and let P be a common point of A and K. Join / 
and P by a line segment and take a point Pf on its extension 
beyond the point P . Draw through P ' the line A' parallel to A. 
Then A' and K have no common point. For if they had a common 
point Q', then the point of intersection Q of A and IQf would be 
an interior point of K, contradicting the fact that A is a line of 
support of K. According to (a) we can pass through A' a bound 
7r' of K. If now P' approaches P by moving on the line P'PI, 
the corresponding plane irr will move parallel to A. For a count­
able number of suitably chosen positions of P ' , the correspond-
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ing plane T' will converge* to a limiting plane TT, which neces­
sarily contains A, and which, as a limit of bounds 7r' of Ky is a 
plane of support of K. 

6. Conclusion. Finally, I wish to point out two facts. 1. The 
assumptions that the functions (1) and (9), respectively, are 
linearly independent are not essential for Theorems 2, 4, and 
for Theorem 5, respectively. 2. In Lemma 2, the continuity of 
p{x) can be replaced by the stronger condition that p(x) be a 
polynomial. To show this one has to change in the proof given 
in §4 the definition of K0 which now should be the set of points 
given by (3), where p(x) is a polynomial, positive in [a, 6], with 
fpdx = l. Our Theorems 1 and 3 can be changed accordingly, 
p(x) being now a polynomial.! 

HARVARD UNIVERSITY 

* See Carathéodory's proof (loc. cit. p. 198) for the existence of a plane of 
support of K passing through a given boundary point of K. 

t After this note was in type, I noticed several articles that are closely 
connected with it. In two articles by S. Kakeya, On some integral equations} 

I and I I (Tôhoku Mathematical Journal, vol. 4 (1914), pp. 186-190, and Pro­
ceedings of the Tokyo Mathematical-Physical Society, (2), vol. 8 (1915-16), 
pp. 83-102), the possibility of finding a solution p(x) of the system (7) is dis­
cussed thoroughly, the solution p(x) being subject to various more or less 
complicated auxiliary conditions. The conditions p(x) > 0 , fpdx= 1, which lead 
to my Lemma 2 above, were not considered by Kakeya. A note by M. Fujiwara, 
On the system of linear inequalities and linear integral inequality (Proceedings 
of the Imperial Academy of Japan, vol. 4 (1928), pp. 330-333) seems to con­
tain (p. 332) a proof of Dines' Theorem 1, similar to the proof given in the 
present note. I t does not actually cover the theorem, however, since Fujiwara 
derives there not the condition p(x)>0 of Theorem 1, but only the weaker 
(necessary but not sufficient) condition p(x)^0. Finally, I may mention a 
beautiful note by W. Fenchel, Geschlossene Raumkurven mit vorgeschriebenem 
Tangentenbild (Jahresbericht der Deutschen Mathematiker-Vereinigung, vol. 
39 (1930), pp. 183-185), where Lemma 2 is proved by a simple elementary 
method which requires no limiting process whatever, except, of course, ordinary 
integration. 


