$$
\begin{equation*}
M^{(1)}-\left|l_{0}^{(1)}\right|=M^{(2)}-\left|l_{0}^{(2)}\right|=0 . \tag{16}
\end{equation*}
$$

A (double) moment-sequence is a pure (double) C-sequence if and only if in addition to (16) we have

$$
l_{0}^{(1)}+l_{0}^{(2)}-j_{0}^{(1)}+J_{2}(1)=0 .
$$

In particular we note that if $J_{1}(u) \equiv J_{2}(v) \equiv 0, \chi(u, v)$ generates a pure C-sequence.

Theorem 7. Condition (α) for $q=p$ implies the entire set of conditions $(\alpha)-(\epsilon)$, including $l_{i j}=0$ for $i, j \neq 0,0$, with the exception of (δ) for $j=0$ and (ϵ) for $i=0$.

Although in this section it has been tacitly assumed that the sequences considered are real, the extension of the results to complex sequences is immediate.

Brown University

ERRATA

This Bulletin, vol. 38, No. 12 (Dec., 1932):
Page 841, first formula: inside of the large parentheses in the denominator, the numerator of the small fraction should be n instead of 1 .
Page 847 , equation (11): the quantity $\mathrm{c} / 2$ should be added to the left-handed side.
Page 847, last line: the second and third integrals should be preceded by the negative sign.
This Bulletin, vol. 39, No. 1 (Jan., 1933):
Page 18, line 8: read Kline in place of Kine.

