312 ERRATA

(16) 
$$M^{(1)} - |l_0^{(1)}| = M^{(2)} - |l_0^{(2)}| = 0.$$

A (double) moment-sequence is a pure (double) C-sequence if and only if in addition to (16) we have

$$l_0^{(1)} + l_0^{(2)} - j_0^{(1)} + J_2(1) = 0.$$

In particular we note that if  $J_1(u) \equiv J_2(v) \equiv 0$ ,  $\chi(u, v)$  generates a pure *C*-sequence.

THEOREM 7. Condition ( $\alpha$ ) for q = p implies the entire set of conditions ( $\alpha$ )-( $\epsilon$ ), including  $l_{ij} = 0$  for  $i, j \neq 0, 0$ , with the exception of ( $\delta$ ) for j = 0 and ( $\epsilon$ ) for i = 0.

Although in this section it has been tacitly assumed that the sequences considered are real, the extension of the results to complex sequences is immediate.

Brown University

## **ERRATA**

This Bulletin, vol. 38, No. 12 (Dec., 1932):

Page 841, first formula: inside of the large parentheses in the denominator, the numerator of the small fraction should be n instead of 1.

Page 847, equation (11): the quantity c/2 should be added to the left-handed side.

Page 847, last line: the second and third integrals should be preceded by the negative sign.

This Bulletin, vol. 39, No. 1 (Jan., 1933):

Page 18, line 8: read Kline in place of Kine.