ON THE REPRESENTATION OF NUMBERS MODULO m^{*}

BY E. D. RAINVILLE

Dirichlet and Kronecker \dagger extended the notion of primitive root to the case of any composite modulus. The classical Kron-ecker-Dirichlet theorem may be stated as follows. Let $m=2^{\alpha_{0}} p_{1}{ }^{\alpha_{1}} \cdots p_{v}{ }^{\alpha_{v}}$, where the p^{\prime} s are distinct odd primes. Determine g_{k}, a primitive root of $p_{k}{ }^{\alpha_{k}}$, for $k=1,2, \cdots, v$. Form

$$
\lambda_{k}=g_{k}+p_{k}{ }_{k}^{\alpha_{k} \beta_{k}} \equiv 1 \quad \bmod m / p_{k}{ }^{\alpha_{k}},
$$

and, if $\alpha_{0}>1$,

$$
\begin{aligned}
\lambda & =-1+2^{\alpha_{0}} \beta \equiv 1 \quad \bmod m / 2^{\alpha_{0}} \\
\lambda_{0} & =5+2^{\alpha_{0}} \beta_{0} \equiv 1 \quad \bmod m / 2^{\alpha_{0}}
\end{aligned}
$$

Then, for (n, m) $=1, n$ is uniquely represented modulo m by

$$
n \equiv \lambda^{i} \lambda_{0} i_{0} \prod_{k=1}^{v} \lambda_{k}{ }^{i_{k}} \bmod m
$$

where the exponents are restricted by the inequalities

$$
0 \leqq i \leqq 1, \quad 0 \leqq i_{0} \leqq \phi\left(2^{\alpha_{0}-1}\right)-1, \quad 0 \leqq i_{k} \leqq \phi\left(p_{k}{ }^{\alpha k}\right)-1
$$

If $\alpha_{0} \leqq 1, \lambda$ and λ_{0} are not to be formed, hence $i=i_{0}=0$ automatically.

In the course of another investigation a further extension to the case of general n (dropping the restriction $(n, m)=1$) became necessary. This is the object of the present note.

Theorem. Let $m=2{ }^{\alpha_{0}} p_{1}{ }^{\alpha_{1}} \cdots p_{v}{ }^{\alpha_{v}}$ (p 's distinct odd primes). Determine g_{k}, a primitive root \ddagger of $p_{k}{ }^{2}, k=1,2, \cdots, v$. Form

$$
\lambda_{k}=g_{k}+p_{k}{ }_{k}^{\alpha_{k}} \beta_{k} \equiv 1 \quad \bmod m / p_{k}^{\alpha_{k}}
$$

and, if $\alpha_{0}>1$,

[^0]\[

$$
\begin{aligned}
\lambda & =-1+2^{\alpha_{0}} \beta \equiv 1 \quad \bmod m / 2^{\alpha_{0}} \\
\lambda_{0} & =5+2^{\alpha_{0}} \beta_{0} \equiv 1 \quad \bmod m / 2^{\alpha_{0}}
\end{aligned}
$$
\]

Then any n is uniquely represented modulo m by

$$
\begin{equation*}
n \equiv 2^{\sigma_{0}} \lambda^{i} \lambda_{0}{ }_{0}^{i_{0}} \prod_{k=1}^{v} p_{k}^{\sigma_{k}} \lambda_{k}{ }^{i k} \bmod m \tag{A}
\end{equation*}
$$

where

$$
0 \leqq \sigma_{0} \leqq \alpha_{0}, \quad 0 \leqq \sigma_{k} \leqq \alpha_{k}, \quad(k=1,2, \cdots, v),
$$

and the other exponents are subject to the restrictions that
if $\sigma_{0} \geqq \alpha_{0}-1$, then $i=i_{0}=0$;
if $0 \leqq \sigma_{0} \leqq \alpha_{0}-2$, then $0 \leqq i \leqq 1$ and $0 \leqq i_{0} \leqq \phi\left(2^{\alpha_{0}-\sigma_{0}-1}\right)-1$;
if $0 \leqq \sigma_{k} \leqq \alpha_{k}$, then $0 \leqq i_{k} \leqq \phi\left(p_{k}{ }^{\alpha^{-}-\sigma_{k}}\right)-1$,
for $k=1,2, \cdots, v$.
Proof. In order to show that all numbers are represented uniquely by (A) we prove (1) that the number of such representations is m, and (2) that no two representations are congruent modulo m.
(1) The number of combinations of exponents σ_{0}, i, i_{0} due to letting σ_{0} assume all permissible values is evidently

$$
\begin{aligned}
1+1+2 \cdot \sum_{\sigma_{0}=0}^{\alpha_{0}-2} \phi\left(2^{\alpha_{0}-\sigma_{0}-1}\right) & =1+\phi(2)+\sum_{\sigma_{0}=0}^{\alpha_{0}-2} \phi\left(2^{\alpha_{0}-\sigma_{0}}\right) \\
& =\sum_{\sigma_{0}=0}^{\alpha_{0}} \phi\left(2^{\alpha_{0}-\sigma_{0}}\right)=2^{\alpha_{0}} .
\end{aligned}
$$

Similarly, for any $k=1,2, \cdots, v$, the number of combinations of exponents σ_{k}, α_{k} due to letting σ_{k} assume all permissible values is

$$
\sum_{\sigma_{k}=0}^{\alpha_{k}} \phi\left(p_{k}^{\alpha_{k}-\sigma_{k}}\right)=p_{k}^{\alpha_{k}} .
$$

Hence, combining these results, we have for T, the total number of representations,

$$
T=2^{\alpha_{0}} p_{1}{ }^{\alpha_{1}} \cdots p_{v}{ }^{\alpha_{v}}=m .
$$

(2) The uniqueness is made to depend upon the KroneckerDirichlet theorem in the following manner. Suppose, with the restrictions of our theorem, that

$$
2^{\sigma_{0}^{\prime}} \lambda^{i} \lambda_{0} i_{0} \prod_{k=1}^{v} p_{k}^{\sigma_{k} \lambda_{k}}{ }_{k}^{i_{k}} \equiv 2^{\sigma_{0}^{\prime}} \lambda^{i^{\prime}} \lambda_{0} i_{0} \prod_{k=1}^{v} p_{k}^{\sigma_{k}^{\prime}} \lambda_{k}{ }^{i_{k}^{\prime}} \quad \bmod m
$$

Then, since λ, λ_{0} and λ_{k} are relatively prime to m,

$$
\sigma_{0}=\sigma_{0}^{\prime}, \quad \sigma_{k}=\sigma_{k}^{\prime}, \quad(k=1,2, \cdots, v),
$$

and we have
(B) $\lambda^{i} \lambda_{0} i_{0} \prod_{k=1}^{v} \lambda_{k}{ }_{k}{ }_{k} \equiv \lambda^{i^{\prime}} \lambda_{0} i^{i_{0}} \prod_{k=1}^{v} \lambda_{k}{ }^{i k^{\prime}} \bmod 2^{\alpha_{0}-\sigma_{0}} \prod_{k=1}^{v} p_{k}{ }^{\alpha{ }_{k}-\sigma_{k}}$.

Since λ_{k} is a primitive root of p_{k}^{2}, it is a primitive root of $p_{k}{ }^{\alpha_{k}-\sigma_{k}}$. From the restrictions of the theorem, we conclude that $0 \leqq i_{k}, i_{k}^{\prime} \leqq \phi\left(p_{k} \alpha_{k}-\sigma_{k}\right)-1$. Further, $0 \leqq i_{0}, i_{0}^{\prime} \leqq \phi\left(2^{\alpha_{0}-\sigma_{0}-1}\right)-1$, if only $\alpha_{0}-\sigma_{0}>1$. Again, if $\alpha_{0}-\sigma_{0}>1$, we know that $0 \leqq i, i^{\prime} \leqq 1$.

Thus all conditions of the Kronecker-Dirichlet theorem are satisfied in (B) for the modulus

$$
2^{\alpha_{0}-\sigma_{0}} \prod_{k=1}^{v} p_{k}^{\alpha_{k}-\sigma_{k}}=\left(m / 2^{\sigma_{0}}\right) \prod_{k=1}^{v} p_{k} \sigma_{k}
$$

and the representation $\lambda^{2} \lambda_{0} i_{0} \prod_{k=1}^{v} \lambda_{c} i_{k}$ is a unique representation modulo $\left(m / 2^{\sigma_{0}}\right) \prod_{k=1}^{v} p_{k}{ }^{\sigma_{k}}$, and, a fortiori, modulo m. Therefore, the representation (A) is unique modulo m.

[^1]
[^0]: * Presented to the Society, March 18, 1933.
 \dagger Dickson, History of the Theory of Numbers, vol. 1, pp. 185, 192.
 \ddagger The root g_{k} is then also a primitive root of $p_{k}^{n}, n>0$ (Dirichlet-Dedekind, Zahlentheorie, 4th ed., 1894, p. 334).

[^1]: The University of Colorado

