ON THE NUMBER OF $(q+1)$-SECANT S_{q-1} 'S OF A CERTAIN $V_{k}{ }^{n}$ IN AN $S_{q k+q+k-1}$

BY B. C. WONG
In this note we are concerned only with those k-dimensional non-developable varieties which are rational loci each of $\infty^{1}(k-1)$-spaces. By a rational locus of $\infty^{1}(k-1)$-spaces we mean one whose ($k-1$)-spaces can be put in a one-to-one correspondence with the points of a straight line. Let such a locus or variety, V_{k}^{n}, of order n be given in an S_{r}. Now in S_{r} there are $\infty^{q(r-q+\mathrm{i})}(q-1)$-spaces. For a $(q-1)$-space to meet $V_{k}^{n} q+1$ times is equivalent to $(q+1)(r-q-k+1)$ simple conditions. In order that the number, N, of ($q-1$)-spaces $(q+1)$-secant to V_{k}^{n}, that is, having $q+1$ points of simple incidence with V_{k}^{n}, be finite, we must have $(q+1)(r-q-k+1)=q(r-q+1)$ or $r=q k+q+k-1$. It is our purpose to determine this number N of $(q+1)$-secant S_{q-1} 's of V_{k}^{n} in $S_{q k+q+k-1}$.

For this purpose we find it convenient to consider the $V_{k}{ }^{n}$ in question as the projection of a $V_{k}^{\prime}{ }^{n}$ in a higher space $S_{r^{\prime}}$. This $V_{k}^{\prime \prime}{ }^{n}$ may always be regarded as the locus of $\infty^{1}(k-1)$-spaces joining corresponding points of k rational, projectively related curves $C^{n_{1}}, C^{n_{2}}, \cdots, C^{n_{k}}$ of respective orders $n_{1}, n_{2}, \cdots, n_{k}$, where $n_{1}+n_{2}+\cdots+n_{k}=n$. The $S_{r^{\prime}}$ containing $V_{k}^{\prime n}$ must be such that $r^{\prime} \leqq n+k-1$. If $r^{\prime}=n+k-1, V_{k}^{\prime n}$ is said to be normal in S_{n+k-1}. It is only necessary to consider this normal $V_{k}^{\prime n}$.

Let the k curves be given parametrically by

$$
\begin{aligned}
& C^{n_{1}} \quad x_{0}: x_{1}: \cdot \cdot: x_{n_{1}}=t^{n_{1}}: t^{n_{1}-1}: \cdots: 1 \text {, } \\
& x_{n_{1}+1}=x_{n_{1}+2}=\cdots=x_{n+k-1}=0 ; \\
& C^{n_{2}} \quad x_{0}=x_{1}=\cdots=x_{n_{1}}=0, \\
& x_{n_{1}+1}: x_{n_{1}+2}: \cdots: x_{n_{1}+n_{2}+1}=t^{n_{2}}: t^{n_{2}-1}: \cdots: 1, \\
& x_{n_{1}+n_{2}+2}=x_{n_{1}+n_{2}+3}=\cdots=x_{n+k-1}=0 ; \\
& C^{n_{k}} \quad x_{0}=x_{1}=\cdots=x_{n-n_{k}+k-2}=0, \\
& x_{n-n_{k}+k-1}: x_{n-n_{k}+k}: \cdots: x_{n+k-1}=t^{n_{k}}: t^{n_{k}-1}: \cdots: 1 .
\end{aligned}
$$

Then a general point of $V_{k}{ }^{n}$ has the coordinates

$$
\begin{gathered}
\left(\lambda_{1} t^{n_{1}}: \lambda_{1} t^{n_{1}-1}: \cdots: \lambda_{1}: \lambda_{2} t^{n_{2}}: \lambda_{2} t^{n_{2}-1}: \cdots: \lambda_{2}: \cdots:\right. \\
\left.\cdots: \lambda_{k} t^{n_{k}}: \lambda_{k} t^{n_{k}-1}: \cdots: \lambda_{k}\right)
\end{gathered}
$$

Now let t take on $q+1$ values, say $t_{0}, t_{1}, \cdots, t_{q}$, and we have $q+1$ points on $V_{k}^{\prime n}$ determining an S_{q}. The parametric equations of this S_{q} are, the parameters being the l 's,

$$
\begin{aligned}
x_{n-n_{h}+h-1+j_{h}} & =\lambda_{h} \sum_{i=0}^{q}\left(l_{i} t_{i} n_{h}-j_{h}\right) \\
& {\left[h=1,2, \cdots, k ; j_{h}=1,2, \cdots, n_{h}\right] }
\end{aligned}
$$

If we now eliminate the t 's, l 's, and λ 's from the above equations of S_{q}, we obtain

x_{0}	x_{1}	$x_{n_{1}-q-1}$	$x_{n_{1}+1}$	$x_{n_{1}+2}$	$x_{n_{1}+n_{2}-q}$
x_{1}	x_{2}	$x_{n_{1}-q}$	$x_{n_{1}+2}$	$x_{n_{1}+3}$	$x_{n_{1}+n_{2}-q+1}$
.	-
x_{q+1}	x_{q+2}.	$x_{n_{1}}$	$x_{n_{1}+q+2}$	$x_{n_{1}+q+3}$	$x_{n_{1}+n_{2}+1}$
			$x_{n-n_{k}+k-1}$	$x_{n-n_{k}+k}$	$\cdots x_{n+k-q-2}$
			$x_{n-n_{k}+k}$	$x_{n-n_{k}+k+1}$	$\cdots x_{n+k-q-1}$
			-		

These are the equations of a $(q k+q+k)$-dimensional variety $V_{q k+q+k}^{M}$ of order M. This variety is the locus of the $\infty^{k(q+1)}$ q-spaces each meeting $V_{k}^{\prime n} q+1$ times. To determine M, notice that the matrix in the left-hand member of the above equality consists of $n-q k$ columns and $q+2$ rows. Applying the rule given by Salmon* for the determination of the order of a restricted system of equations, we find that the order of $V_{q k+q+k}^{M}$ is

$$
M=\binom{n-q k}{q+1}
$$

Since $V_{q k+q+k}^{M}$ is in S_{n+k-1}, an $S_{n-q k-q-1}$ of S_{n+k-1} meets it in

[^0]M points. Now let both $V_{k}^{\prime n}$ and $V_{q k+q+k}^{M}$ be projected from $S_{n-q k-q-1}$ upon an $S_{q k+q+k}$. The projection of the former is a $V_{k}^{\prime \prime n}$ and that of the latter is a system of $\infty^{k(q+1)} q$-spaces. Each of these q-spaces is $(q+1)$-secant to $V_{k}^{\prime \prime n}$ and M of them pass through a given point P. If we now project $V_{k}^{\prime \prime n}$ from P upon an $S_{q k+q+k-1}$ of $S_{q k+q+k}$, we obtain for projection the V_{k}^{n} the number N of whose ($q+1$)-secant ($q-1$)-spaces we wish to find. The $(q+1)$-secant S_{q-1} 's of $V_{k}{ }^{n}$ are the ($q-1$)-spaces in which $S_{q k+q+k-1}$ intersects the $(q+1)$-secant S_{q} 's of $V_{k}^{\prime \prime n}$ passing through P. Hence the number N we are seeking is equal to M, that is,
$$
N=\binom{n-q k}{q+1}
$$

Thus, for $k=1$, we have a rational curve C^{n} in $S_{2 q}$ having $\binom{n-q}{q+1}(q+1)$-secant S_{q-1} 's. If $q=1$, we have the familiar case of a rational plane curve of order n with $(n-1)(n-2) / 2$ double points. If $q=2$, we have the case which is also familiar of a rational 4 -space curve having $(n-2)(n-3)(n-4) / 6$ trisecant lines.

Let $k=2$ and we have a rational ruled surface F^{n} of order n in $S_{3 q+1}$ with $\binom{n-2 q}{q+1}(q+1)$-secant S_{q-1} 's. Thus, a rational F^{n} in S_{4} has $(n-2)(n-3) / 2$ improper double points; an F^{n} in S_{7} has $(n-4)(n-5)(n-6) / 6$ trisecant lines.

If we put $k=3$ and then $q=1,2,3, \cdots$, successively, we find, by what precedes, that a rational planed variety $V_{3^{n}}$ of order n in $S_{6}, S_{10}, S_{14}, \cdots$, has, respectively, $(n-3)(n-4) / 2$ improper double points, $(n-6)(n-7)(n-8) / 6$ trisecant lines, $(n-9)(n-10)(n-11)(n-12) / 24$ quadrisecant planes, $\cdot \cdots$

The University of California

[^0]: * Modern Higher Algebra, 4th ed., Lesson 19.

