INTEGRAL FUNCTIONS OBTAINED BY COMPOUNDING POLYNOMIALS*

BY J. F. RITT

1. Introduction. We consider a sequence of polynomials $P_{n}(z),(n=1,2, \cdots)$, where the degrees of the P_{n} do not exceed a fixed integer m and where each P_{n}, ordered in ascending powers of z, starts with the term z. We shall study the sequence of polynomials $Q_{n}(z)$ defined by

$$
\begin{equation*}
Q_{1}(z)=P_{1}(z) ; Q_{n+1}(z)=Q_{n}\left[P_{n+1}(z)\right], \quad(n=1,2, \cdots) \tag{1}
\end{equation*}
$$

and also the sequence of polynomials $R_{n}(z)$ defined by

$$
\begin{equation*}
R_{1}(z)=P_{1}(z) ; R_{n+1}(z)=P_{n+1}\left[R_{n}(z)\right], \quad(n=1,2, \cdots) \tag{2}
\end{equation*}
$$

If the coefficients, after the first, in P_{n}, are sufficiently small, these sequences will converge to integral functions. For instance, $\sin z$ can be obtained, in many ways, as a limit of a sequence (1). In what follows, our chief object will be to establish conditions under which the sequences converge to integral functions.
2. The Sequence of $Q_{n}(z)$. Let

$$
P_{n}(z)=z+a_{n 2} z^{2}+\cdots+a_{n m} z^{m}, \quad(n=1,2, \cdots)
$$

where m is an integer independent of n.
Theorem 1. Let a convergent series of positive numbers,

$$
\begin{equation*}
c_{1}+c_{2}+\cdots+c_{n}+\cdots, \tag{3}
\end{equation*}
$$

exist such that $\left|a_{n i}\right|<c_{n}$, for every n and for $i=2, \cdots, m$. Then the sequence of polynomials $Q_{n}(z)$ converges to an integral function, the convergence being uniform in every bounded domain.

Proof. For every n,

$$
\begin{equation*}
U_{n}(z)=z+c_{n}\left(z^{2}+\cdots+z^{m}\right) \tag{4}
\end{equation*}
$$

is a majorant of $P_{n}(z)$. Let

$$
V_{1}=U_{1} ; V_{n+1}=V_{n}\left(U_{n+1}\right), \quad(n=1,2, \cdots)
$$

[^0]Then V_{n} is a majorant of Q_{n}. Also, if we let

$$
\alpha_{n}=c_{n}\left(z^{2}+\cdots+z^{m}\right)
$$

we have

$$
\begin{aligned}
V_{n+1}-V_{n} & =V_{n}\left(z+\alpha_{n+1}\right)-V_{n} \\
& =\frac{d V_{n}}{d z} \alpha_{n+1}+\frac{1}{2!} \frac{d^{2} V_{n}}{d z^{2}} \alpha_{n+1}^{2}+\cdots
\end{aligned}
$$

from which it follows easily that $V_{n+1}-V_{n}$ is a majorant of $Q_{n+1}-Q_{n}$. For every positive $z, V_{n+1}(z)>V_{n}(z)$. These considerations show that our theorem will be proved if we can show that the sequence of V_{n} converges for every positive z.

Let b be any positive number. Let

$$
\begin{equation*}
h=2 b+4 b^{2}+\cdots+2^{m-1} b^{m-1} \tag{5}
\end{equation*}
$$

Then the infinite product $\left(1+h c_{1}\right) \cdots\left(1+h c_{n}\right) \cdot \cdots$ converges. Let p be a fixed integer such that

$$
\begin{equation*}
\left(1+h c_{p+1}\right)\left(1+h c_{p+2}\right) \cdots<2 \tag{6}
\end{equation*}
$$

Let

$$
W_{1}=U_{p+1} ; W_{n+1}=W_{n}\left(U_{p+n+1}\right), \quad(n=1,2, \cdots)
$$

It will plainly suffice to show that the sequence of W_{n} converges for $z=b$. For any n, by (4) and (5),

$$
U_{p+n}(b)<b\left(1+h c_{p+n}\right)
$$

so that, by (6), $U_{p+n}(b)<2 b$. Hence

$$
\begin{aligned}
U_{p+n-1}\left[U_{p+n}(b)\right] & =U_{p+n}(b)\left[1+c_{p+n-1}\left(U_{p+n}(b)+\cdots\right)\right] \\
& <U_{p+n}(b)\left[1+h c_{p+n-1}\right] \\
& <b\left(1+h c_{p+n-1}\right)\left(1+h c_{p+n}\right)
\end{aligned}
$$

and the last quantity, by (6), is less than $2 b$. Continuing in this fashion, we find that, for every n,

$$
W_{n}<b\left(1+h c_{p+1}\right) \cdots\left(1+h c_{p+n}\right)<2 b
$$

This shows that the $W_{n}(b)$, which increase with n, approach a limit. The theorem is proved.

That the condition placed on the P_{n} is critical with respect to the convergence of the Q_{n}, is seen on taking $P_{n}=z+c_{n} z^{m}$ with
$c_{n}>0$ and (3) divergent. The coefficient of z^{m} in Q will be $c_{1}+\cdots+c_{n}$ and Q_{n} will tend towards infinity with n for every positive z.

The function $\sin z$ can be expressed as a limit of polynomials Q_{n}. Let

$$
\begin{equation*}
P_{n}(z)=z-\frac{4}{3^{2 n+1}} z^{3} \tag{7}
\end{equation*}
$$

The formula

$$
\sin z=3 \sin \frac{z}{3}-4 \sin ^{3} \frac{z}{3}
$$

gives then

$$
\sin z=Q_{n}\left(3^{n} \sin 3^{-n} z\right)
$$

From (7) we see that the Q_{n} converge to an integral function. This integral function must be $\sin z$, since $3^{n} \sin 3^{-n} z$ approaches z as n increases.*
3. The Sequence of $R_{n}(z)$. We shall study the sequence of $R_{n}(z)$ defined by (2).

Theorem 2. Let the $P_{n}(z)$ all be of degree at most $m>1$. Let a sequence of positive numbers c_{n} exist such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} c_{n}^{1 / m^{n}}<1 \tag{8}
\end{equation*}
$$

and'such that, for every n, the moduli of the coefficients of z^{2}, \cdots, z^{m} in P_{n} are all less than c_{n}. Then the $R_{n}(z)$ converge to an integral function, the convergence being uniform in every bounded domain.

Proof. Let r be a number which lies between the two members of (8). Then, for n large,

$$
z+r^{m^{n}}\left(z^{2}+\cdots+z^{m}\right)
$$

will be a majorant of $P_{n}(z)$. A fortiori, since $m>1$,

$$
\begin{equation*}
U_{n}(z)=z+r^{m n-1} z^{2}+r^{2 m n-1} z^{3}+\cdots+r^{(m-1) m^{n-1} z^{m}} \tag{9}
\end{equation*}
$$

[^1]will be a majorant of $P_{n}(z)$ for n large. We see now readily that it will suffice, for the proof of our theorem, to show that the sequence of $V_{n}(z)$ defined by
\[

$$
\begin{equation*}
V_{1}=U_{1} ; V_{n+1}=U_{n+1}\left(V_{n}\right), \quad(n \geqq 1), \tag{10}
\end{equation*}
$$

\]

converges for every real and positive $z . \dagger$
Let p be any non-negative integer. Putting

$$
\begin{equation*}
W_{1}=U_{p+1} ; W_{n+1}=U_{p+n+1}\left(W_{n}\right), \quad(n \geqq 1), \tag{11}
\end{equation*}
$$

we shall show that the sequence of W_{n} converges for $z<h r^{-m^{p}}$, where $h=1-r$.

By (9),

$$
S_{n}(z)=\frac{z}{1-r^{m p^{p+n-1} z}}, \quad(n=1,2, \cdots)
$$

is a majorant of U_{p+n}. If, then,

$$
T_{1}=S_{1} ; T_{n+1}=S_{n+1}\left(T_{n}\right), \quad(n \geqq 1)
$$

T_{n} will be a majorant of W_{n}. Now an easy calculation shows that

$$
T_{n}(z)=\frac{z}{1-\left(r^{m p}+\cdots+r^{m p+n-1}\right) z}
$$

For any positive z less than the reciprocal of the infinite series

$$
r^{m p}+r^{m p+1}+\cdots,
$$

which reciprocal we shall denote by k, the $T_{n}(z)$ form a sequence of numbers which increase towards $k z /(k-z)$. Also, if $0<z<k, T_{n}(z)>W_{n}(z)$, so that the $W_{n}(z)$ will form a bounded sequence of increasing numbers and will converge to a limit. Now as $m>1$,

$$
k \geqq \frac{r^{-m p}}{1+r+r^{2}+\cdots}=h r^{-m p}
$$

and our statement with respect to (11) is proved.
Thus Theorem 2 will be established if, putting $V_{0}(z)=z$, we show that for every positive z there is a p such that $V_{p}(z)<h r^{-m^{p}}$.

[^2]Let us assume that there is a positive z for which no such p exists. In what follows, we work with a fixed z of this type. We have, by (9) and (10), for any $n \geqq 0$,

$$
\begin{align*}
V_{n+1} & =V_{n}+r^{m n} V_{n}^{2}+\cdots+r^{(m-1) m^{n}} V_{n}^{m} \\
& \leqq V_{n}\left(1+r^{m} V_{n}\right)^{m-1} \tag{12}
\end{align*}
$$

Now, for every n,

$$
\begin{equation*}
V_{n} \geqq h r^{-m^{n}} \tag{13}
\end{equation*}
$$

so that

$$
1 \leqq \frac{r^{m^{n}} V_{n}}{h}
$$

and, if we put $a=(1+1 / h)^{m-1}$, we have, by (12),

$$
V_{n+1} \leqq a r^{(m-1) m^{n}} V_{n}^{m} \leqq a r^{m^{n}} V_{n}^{m} .
$$

We have thus

$$
V_{1} \leqq a r z^{m}, \quad V_{2} \leqq a^{m+1} r^{2 m} Z^{m 2}, V_{3} \leqq a^{m^{2+m+1}} r^{3 m^{2}} z^{m^{3}},
$$

and, in general,

$$
V_{n+1} \leqq a^{m^{n}+\cdots+1} r^{(n+1) m^{n}} z^{m^{n+1}}
$$

As $m>1$, we have $m^{n}+\cdots+1<m^{n+1}$. Then, because $a>1$,

$$
\begin{equation*}
V_{n+1}<\left[r^{(n+1) / m} a z\right]^{m^{n+1}} . \tag{14}
\end{equation*}
$$

As z is fixed, $r^{(n+1) / m} a z$ is small for n large, so that, by (14), V_{n+1} approaches 0 as n increases. This contradicts (13). The theorem is proved.

The condition (8) is a critical one. That we cannot let the first member of (8) be as great as unity is seen on taking $P_{n}=z+z^{m}$. The coefficient of z^{m} in Q_{n} will be n and the Q_{n} will diverge for every positive z. That m in the first member of (8) cannot be replaced by any smaller positive number α, is seen, taking $m=2$, for instance, on putting $P_{n}=z+2^{-\alpha^{n}} z^{2}$. For any positive z, we have

$$
P_{n}>2^{-\alpha n} z^{2} .
$$

Then

$$
R_{1}>2^{-\alpha} z^{2}, R_{2}>2^{-\left(\alpha^{2}+2 \alpha\right)} z^{4}
$$

and, in general,

$$
R_{n}>2^{-\left(\alpha^{n}+2 \alpha^{n-1}+\cdots+2^{n-1} \alpha\right)} z^{2 n}
$$

Now

$$
-\left(\alpha^{n}+2 \alpha^{n-1}+\cdots+2^{n-1} \alpha\right)=\frac{\alpha^{n+1}-2^{n} \alpha}{2-\alpha}>-b 2^{n}
$$

where $b=\alpha /(2-\alpha)$. Thus

$$
R_{n}>\left(\frac{z}{2^{b}}\right)^{2 n}
$$

so that the R_{n} diverge for $z>2^{b}$.
Let $f(z)$ be an integral function obtained as a limit of polynomials $R_{n}(z)$, the approach being uniform in every bounded domain. Unless $P_{n}(z)=z$ for every $n, f(z)$ will not be linear, for if some $R_{n}(z)$ is of degree greater than unity, $f(z)$, like that $R_{n}(z)$, will assume certain values at more than one place. In what follows, we shall assume that $f(z)$ is not linear.

We are going to prove that, between any two branches of the inverse of $f(z)$, there exists an algebraic relation of a simple type.

Let a and b be two distinct points such that $f(a)=f(b)$ and that the derivative of $f(z)$ does not vanish at a or at b. Let A be a circle with a as center such that, in the interior of $A, f(z)$ assumes no value twice. Let B be a similar circle with center at B. We can find a neighborhood M of $f(a)=f(b)$ such that, both in A and in $B, R_{n}(z)$ with n large assumes all values in M. If n is large enough, $R_{n}(a)$ will be in M. In what follows, we deal with a fixed $R_{n}(z)$ for which both conditions just described are realized.

If z_{a} is a point in A, very close to a, there will be a z_{b} in B such that $f\left(z_{b}\right)=f\left(z_{a}\right)$, and, furthermore, $R_{n}\left(z_{a}\right)$ will lie in M. We shall prove that $R_{n}\left(z_{a}\right)=R_{n}\left(z_{b}\right)$. As $R_{n}\left(z_{a}\right)$ is in M, there is a ζ in B such that $R_{n}(\zeta)=R_{n}\left(z_{a}\right)$. Now ζ must coincide with z_{b}, for $f(\zeta)=f\left(z_{a}\right)=f\left(z_{b}\right)$ and $f(z)$ assumes no value twice in B.

Thus, if we put $w=f(z)$ and if $\alpha(w)$ and $\beta(w)$ are two branches of the inverse of $f(z)$, then, for n large, $R_{n}[\alpha(w)]=R_{n}[\beta(w)]$.

Columbia University

[^0]: * Presented to the Society, April 14, 1933.

[^1]: * In the same way, one can express as limits of polynomials Q_{n} a large class of the functions with rational multiplication theorems introduced by Poincaré (Journal de Mathématiques, vol. 55 (1890)).

[^2]: \dagger The fact that U_{n} may not be a majorant of P_{n} for n small is of no significance. One may suppress a finite number of P_{n} and then add a finite number of polynomials (9) to the beginning of the resulting sequence of U_{n}.

