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R U T H E R F O R D ON MODULAR INVARIANTS 

Modular Invariants. By D. E. Rutherford. Cambridge Mathematical Tracts, 
Number 27. Cambridge, University Press, and New York, Macmillan, 
1932.vi i i+84pp. 

This little tract brings together into small compass the principal results in 
the theory of modular invariants (both formal and otherwise) up to 1930, thus 
assembling, under one cover both the results of what might be called the Ameri
can school—Dickson, Glenn, Sanderson, Hazlett, and others—and also the 
work of E. Noether based on the abstract theory of ideals, as it appears in 
the research of Steinitz, Art in, and van der Waerden. 

The subject had its rise in 1903 in a paper by Hurwitz on the solution of 
higher congruences, but lay dormant until rediscovered, in another connec
tion, by Dickson in 1907. During the next seven years, the latter developed 
and finished the theory of modular invariants (here called residual covariants), 
based on the theory of classes, developed a theory of invariants of the general 
linear group defined over the Galois field, GF[pn]} proved the finiteness theo
rem for modular covariants, and made the beginnings of a theory of formal 
modular covariants (here called formal covariants). In 1913 appeared that 
short but stimulating and suggestive paper by Miss Sanderson, giving her 
theorem that given a formal modular invariant, i, of a system of forms under 
a modular group, G, defined over GF[pn], we can construct a formal modular 
invariant, I , such that I x is congruent to i in the field for all sets of values of 
coefficients in the field. In the Madison Colloquium Lectures (1914), Dickson 
gave a series of lectures on the theory to date. During the next eight years 
appeared many papers by American writers on the subject, giving treatments 
of special cases and proving various theorems that are more or less analogous 
to theorems in the classic theory of algebraic invariants. At the end of Miss 
Sanderson's paper, she expressed some of the formal invariants and covariants of 
the fyinary quadratic for GF[pn = 3 ] in a symbolic form, and this small but sug
gestive beginning was now the source of inspiration of Miss Hazlett 's paper 
(1921-22) on the symbolic theory of formal modular covariants of a binary 
form. This proved that a suitable positive, integral power of every formal mod
ular invariant is congruent in the field to an algebraic invariant oîf(a; x) and 
certain related forms, /(a**1; x), f(a^n; * ) , • • • , f(a; ***), • • • . The same 
paper also proved the finiteness theorem for formal modular covariants of a 
system of binary forms. Then, in 1926, appeared a brief but important paper 
by E. Noether in which she proved the finiteness theorem for a system of w-ary 
forms, by using the theory of a ring of polynomials in any number of variables. 

Rutherford takes all this theory—at least, all of any importance—and 
welds the various results and processes into a whole, putting the work of the 
American school into Part I (51 pages) and following this, in Part I I (31 pages) 
by E. Noether's theorem together with as much of the theory of fields, both 
algebraic and transcendental, as is necessary for her proof. 

Throughout the whole tract, Rutherford is very clear-cut in precisely those 
places where it is necessary. At the very beginning (§1), he introduces two 
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new notations, | | and | | |, to denote respectively "is congruent to" and "is 
identically congruent to." After a couple of sections in which he defines a 
Galois field, GF[pn], of order pn

f he states Fermât's theorem for this field and 
summarizes the essentials of the theory of linear groups in this field. He de
votes the fourth section to a clear-cut classification of concomitants of a sys
tem of w-ary forms into five essentially different types. 

As this is the first time that such a classification has been made and as he 
changes the name for one type, it will, perhaps, be just as well to reproduce his 
classification. If the coefficients of the forms are denoted by a's and the coeffi
cients of the linear transformation by a's, the concomitants have to be studied 
by essentially different methods according as both the a's and the a's are inde-
terminates in the field, CF, of complex numbers, or in the Galois field, GF[pn], 
or one in one field and the other in the other field. Type I: If both the a's 
and a's are in CF and reductions of the form p\\\0 are allowed, the con
comitants are algebraic, which is the classic type and thus not treated here. 
Type II: If both a's and a's belong to CF but reductions £ | | |0 are allowed in 
the numerical coefficients that arise as a result of multiplication and addition, 
the concomitants are called congruent concomitants by the author. Type III: 
If the a's belong to C.Fand the a's to GF[pn], so that the reductions p \ | )0 in 
the numerical coefficients and aPw | |a are permitted, then the concomitant is 
called formal. (It used to be called a formal modular concomitant.) Type IV: 
If the a's belong to GF[pn] and the a's to CF, so that reductions p \ | |0 and 
apn | |a are allowed, then the concomitant is called a non-formal concomitant. 
(To date, these have not been studied.) Type V: If both the a's and the a's 
are in GF[pn], so that reductions p \ | |0, apn | \a, and apn | |a are permitted, then 
the concomitant is called a residual concomitant although formerly called a 
modular concomitant. Types II to V are grouped together and called modular 
by Rutherford to distinguish them from Type I, the non-modular or algebraic 
case. Throughout the rest of this review, we shall use Rutherford's termi
nology. 

After a few other sections devoted to further preliminary notions, he first 
considers congruent concomitants, proving that a congruent concomitant is 
completely isobaric and that, if a formal concomitant is isobaric, it is a con
gruent concomitant. Then he proves that, in the binary case, every congruent 
concomitant is congruent to an algebraic concomitant of the same system of 
forms. To date, however, no one has proved in the general w-ary case that 
every congruent concomitant is congruent to an algebraic concomitant. This 
is both unfortunate and tantalizing, for the question as to whether a congruent 
concomitant is congruent to an algebraic concomitant is equivalent to the 
question as to whether a congruent concomitant is representable symbolically, 
so that the existence of congruent concomitants not congruent to algebraic 
concomitants would mean that the symbolical theory of formal modular con
comitants developed about 1921 would not be of much use. So, until some one 
has proved that there exists no congruent concomitant that is not representable 
symbolically, it is necessary to divide all congruent concomitants into two 
classes: symbolic and non-symbolic. This phraseology, "until some one has 
proved that there exists no congruent concomitant" may seem to beg the ques
tion, but both the author and reviewer have the feeling that every congruent 
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concomitant is congruent to an algebraic one. If there exist any that is not alge-
graic, then such must be very different from those that are algebraic, and even 
peculiar. 

Now follow a couple of sections on universal invariants ( = invariants of the 
group), including Dickson's neat proof that a full system of universal in
variants consists of the determinant, L, and various quotients of determinants, 
the Q's. This is followed by several sections on methods of forming a large 
number of invariants by using the results on universal invariants and various 
modular operators, due to Glenn. In his final section on this part of the theory, 
he proves Hazlett's theorem already quoted. 

Next, he turns his attention to residual invariants (called by Dickson and 
others modular invariants) and he gives Dickson's very beautiful and alto
gether satisfying theory of classes and characteristic invariants and a new 
theory of syzygies of residual invariants due to Weitzenböck. In view of 
Sanderson's theorem, it is easily possible to obtain a full system of residual 
invariants from a full system of formal invariants by replacing each variable, a»-, 
by a general number of the field and reducing with respect to the moduli that 
determine the field. As her theorem has not yet been extended to covariants, 
there is at present no definitive method of deciding whether a given set of 
residual covariants form a full set. The next two sections give a method of 
finding characteristic invariants and a method of finding a smallest full sys
tem, of which the work seems to be largely new and due to the author, as the 
reviewer does not recall having seen it and there is no reference. Then follow 
several sections of Dickson's work on residual invariants for special cases and 
a very brief section on the kind of modular covariant that he calls non-formal 
residual covariant. The latter has not been studied up to the present, but seems 
to have no importance. 

In Part II, he devotes about eleven pages to Steinitz's work on fields 
(Journal für Mathematik, vol. 137 (1909-10), pp. 167-309; published in book-
form with title Algebraïsche Theorie der Körper, under the editorship of R. 
Baer and H. Hasse, 1930) reproducing his central theorems on algebraic and 
transcendental expansions and systems both reducible and irreducible. Then 
he gives the rational basis theorem of E. Noether which was first published in 
the Göttinger Nachrichten for 1926 (Heft 1, p. 28) which asserts that, if {ƒ} 
be a collection of rational functions f(xi, • • • , xn) of w indeterminates 
xi, ' ' • , xn with coefficients from a field K, then from {ƒ} it is possible to choose 
a finite number of functions f\, • • • , fm such that every ƒ is a rational function 
of these ƒ»• with coefficients from the field K. Such a system of forms/i, • • •, fm 

is called a rational basis. The proof depends essentially on a well known theo
rem about the dependence of w + 1 polynomials in n independent variables 
and a theorem of Steinitz. Then follow several pages on perfect and imperfect 
fields, together with the definition of the fields Kp±f followed by a section on 
expansions of the first and second sort. Having thus prepared the way, the 
author is now ready to give van der Waerden's theorem on divisor chains. 
If R be a ring in which every ideal is finite, then every ideal of R has a finite 
basis if and only if there exist no chain of ideals a i<a 2 < • • • , where a»-+i is 
an actual divisor of a», which chain does not come to an end after a finite 
number of steps. After two more sections on i?-modules and a theorem on 



842 O. C. HAZLETT [November, 

rings due to Art in and van der Waerden, he gives the finit eness criterion of E. 
Noether which asserts tha t a ring / o f polynomials in xi, • • • , xn with coeffi
cients from P , which has no divisors of zero, is finite with respect to P if and 
only if there exist within J a sub-ring R which is finite with respect to P, such 
that every element of / i s i?-entire. From this follows immediately, as a special 
case, the finiteness theorem for modular covariants. 

There are three appendices, of which the first is devoted to a summary of 
all papers on modular covariants published since the third volume of Dickson's 
History of the Theory of Numbers, where (in Chapter 19) he gave a sum
mary of all papers published up to that date. In the second, he gives a list of 
papers on the subject ; and, in the third, a tabulation of those papers in which 
modular covariants of an m-ary /-ic are considered for particular cases of m 
and L 

The reviewer noticed only one misprint that might bother anyone. On 
page 30, in the footnote, the reference should be to volume 24 (1922) of the 
Transactions and not to volume 14 (1913). 

In the amount of space at his disposal, the author seems to have done about 
the best possible in presenting his subject. Although the reviewer would most 
certainly not have followed the order of topics chosen by the author, yet she has 
to admit that the author has succeeded in giving practically all the widely 
differing points of view of the various writers. I t is unfortunate that the second 
part of the tract is so radically different from the first ; but this is a comment 
on the mathematics rather than on the author, at the present stage of develop
ment. Of course the finiteness theorem is, strictly speaking, a theorem of rings 
in general and not of modular invariants themselves, so that the sharp cleavage 
is natural. The author has certainly assimilated the theorems and processes 
of the theory of modular invariants and he is to be congratulated on his tract. 

O. C. HAZLETT 


