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Since the discriminant of the cubic is a square, b can be chosen
so that @’ =1. The corresponding value of 8’ is

, = 71296
a®b¥(4a® — 2762)
The ratio of B’ to o’ is —9832/(a?b). If we take « in (3) to be 1
and determine b in (20) so that @’ is 1, we have
g = — B4 — 27810,

We have therefore the following theorem.

THEOREM 3. If p is of the form 6k—1 and x*—x+B=0 is
irreducible, then x3—x+pB(4—2732)12=0 is also irreducible.

If B in the above theorem is not 1/3, the second cubic is dis-
tinct from the first. By repeated applications of the theorem we
obtain a set of cubics of the form x*—x-+3=0, but in general
we do not obtain all of them.

TreE UNIVERSITY OF ILLINOIS

THE ALGEBRA OF SELF-ADJOINT
BOUNDARY-VALUE PROBLEMS*

BY V. V. LATSHAW

1. Introduction. By algebraic processes, D. Jacksont obtained
in matrix form the condition for self-adjointness of differential
systems of any order. The purpose of this paper is to develop by
means of the matrix criterion the explicit conditions for self-
adjointness of the boundary conditions associated with self-
adjoint and anti-self-adjoint differential equations.

2. Even-Order Systems. Let L(u) denote the self-adjoint dif-
ferential expression}

(1) L) = (pmu ™)™ 4 (pmoaum D) D 4 - oo+ pou,

where m is any positive integer, p;(x) is of class C¢, and pn.(x) =0
in the interval (e =x=b). Along with

* Presented to the Society, October 31, 1931.
t D. Jackson, Transactions of this Society, vol. 17 (1916), pp. 418-424.
1 Bounitzky, Journal de Mathématiques, (6), vol. 5 (1909), p. 107.



970 V. V. LATSHAW [December,

2) L(u) =
is given a set of 2m linearly independent boundary conditions:

2m

Ui(u) = 3 {aru(a) + brut=0(b)} =
=1
The theorem of Jackson is as follows.
If the differential expression L(u) is self-adjoint, the condition
that the boundary conditions be self-adjoint is that the matrix*

¥mWy — 2x@p 4 =@

be symmetric; if L(u) is an anti-self-adjoint expression or differs
from such an expression only in the terms of order zero, the con-
dition is that the matrix just written down be skew symmetric.

If we denote the elements of the non-singular matrix A; by
¢i; and those of A, by ¢;;, we have

il= (Qly 1; Zm: Zm),/zl)
where Q;; represents the cofactor of ¢;; in 4;. Since =V is skew

symmetric, we find that the element in the sth row and jth
column of the matrix 3 =®3$ may be written

= f Z Wr(:)[ zm: q'niq.k:i(Qners—Qnstr)]-

Al r=1 s==r41 7, k=1

The summation over the indices # and % is equivalent to

5 ,,Z [(Gaies — dnies) @uQie — Quilir)]-
n=1 =n+1

* We shall adopt the following notation:
Opq * * * Ops Upq * * * Grg
(ap, 51, 8) =\ - -+ ) (ap,q51,9) =
Qrg * * *Qrs Qps * * * Qys

Boldface letters denote matrices and dashed italics determinants. If we let A;
be a square non-singular matrix of the coefficients of 2m variables in Ui(x)
and A, the matrix of the remaining 2m variables, then & denotes the product
Ai'A; and &’ the conjugate of 8. Further, we have from Green'’s formula,

fb [0L(2) — uL(v)]dx = w(u, ),

F ORI 1O ((1:<1)1, 1; 2m, 2m)(®®1, 1; 2m, 2m)
(,;(4) ﬂ(z)) (=1, 1; 2m, 2m) (%1, 1; 2m, 2m)
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We replace the quantity Qn.,Qk— QnQs by 41 [alg. comp. of
(gnrqks — gnegir) | and obtain the further equivalent expression

2m—1 2m
Ax[ 5 (Guidei — dnides) {alg. comp. of (gudie

n=1 k=n+l
- Qneq}:r) }]-

The expansion within the brackets is Laplace’s development
of the determinant A4; with the rth and sth columns replaced
by the ¢th and jth columns, respectively, of A,. This determinant
will be denoted by D,.(2, 7).

The application of the criterion of the theorem cited, which
required the product of five matrices, is reduced to a process
summarized in the following theorem.

THEOREM 1. Given the self-adjoint differential equation, L(u)
=0, defined by (1), where the coefficients are of class Ct, and pn(x)
#=0 1n the interval (a Sx=b), and given a set of 2m linear bound-
ary conditions

2m

Us(w) = 2{aru=(e) + brau0)} =0,
=1
where the determinant A,=|q.;| is of rank 2m; then the condition
for self-adjointness of the system thus defined, that is, that the
matrix

(AT4;) = WATIA; — 2= WATIAy + =@

be symmetric, reduces by the removal of the factor A, to the following
m(2m — 1) conditions:
2m—1 2m 2m

(¢} .o (4) .
Tii = E Z Trs Dra("'; ]) - ir Dr(])

r=1 §=ri1 r=1

w,_ . - @ .
+ 2w Do(3) + Aimij =0, (i<j=2m).
r=1

The symbol D, (¢, j) denotes the determinant A, with the rth and
sth columns replaced by the ith and jth columns, respectively, of As;
D, (4) indicates one replacement only.

We illustrate the theorem with an example. Let us consider
the second-order system
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2

(p1)" + powe = 0, D {arut=0(a) + brut-v(b)} = 0,
= (E=1,2).
According to the theorem there is one condition for self-
adjointness of the boundary conditions, namely,

1 (4 ( (
Typ = me Dia(1, 2) — 71y Di(2) — 712 Da(2) + a1 Da(1)

4) — (@
+ o2 Dz(l) -I-A11r1: = 0.

For the sake of definiteness let us assume the non-singular
matrix to be

4, = (011 bu); then A, = <012 bu) )
a1 ba1 Az baa

Accordingly we have

=D =0, =® =0,
=® = (_ pi@) O ), 0 = <‘b1(a) 0 ),
0 £1(b) 0 — 21(b)
b1 b
Ty = P1(d) 11 O12 _ Pl(b) a1 Q12 0.
bar bag a1 Q22

3. Special Cases. In the explicit characterization of specific
cases we assume first that in the 2m boundary conditions the
sets of terms involving the point @ are linearly independent.
Under this assumption the condition for self-adjointness be-

comes
(AT4:)'m VAT 4s + = = 0,

subject to the following definitions:

A, = (al, 1; 2m, 2m), A, = (b1, 1; 2m, 2m),

(w(” 7:(3)) <(a1, 1; 2m, 2m) 0 )*
TT\a®w @) 0 (81, 1; 2m, 2m)

* The quantities ar; and By, are given by the relations
tn = (= ™G(@), B = (— 1yG(b), where G(x) = Z(” : ') 2P,

f@rs=n<ms—1), (k=2n+1—r—5=0), and » <s. Further we set

()

3)
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We incorporate these results in a corollary.

COROLLARY. If in Theorem 1 we assume that the determinants
Ai=|ai;| and Ay=|bi;| are of rank 2m, then the condition for
self-adjointness of the system thus defined reduces to the following
m(2m —1) explicit conditions:

m 2m
Tii= 2, 2 anDu(i, j) + AiBi; = 0, (i< j < 2m).
r=1 s=r+l

The quantities as and B are computed from the relations (3).
An example will illustrate the corollary. Let us consider the

second-order system
2

(plu’)’ + pou = 0, E{akiu“‘”(a) “+ bkiu“‘”(b)} = 0.
=1

One explicit condition for self-adjointness is obtained:

Ty = a12D12(1, 2) + :‘1—1612 = 0.

From (3) we have aiz=p1(a) and Bin= —p1(d); also we observe
Dys = b bie and .:4_1 - a1 Q2
ba1 bae Q21 Q22

We now write the condition in the well known form

b1 Dbie a1 G12

ba1 bae

Ti2 = pi(a) — 71(0) = 0.

Q21 Q22

As a second special case let us consider a system consisting of
the self-adjoint differential equation defined in (2) and a set of
2m linearly independent Sturmian boundary conditions

2m
Uéa) = de,’u“_l»)(a) = 0: (k 1: 2) D] h)’
=1

2m
UP = ThwD®) =0, (E=1,2,--,.

=1

It can be shown* that if % of the given boundary conditions

* D. Jackson, Proceedings of the American Academy of Arts and Sciences,
vol. 51, pp. 403-417.
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involve only the point @, then % of the adjoint conditions will in-
volve only the point b; consequently for z#f self-adjointness is
impossible. We shall assume »=f=m and that the sets of terms
involving the variables u(a), #’(a), - - -, u™V(a) and likewise
those involving the variables u(b), u’(b), - - -, u{™D(d) are
linearly independent. Following the process previously outlined,

we find
(a 0) <(a1, 1;m,m) 0
A, = = )J
0 b 0 (81, 1;m, m)

((al, m =+ 1; m, 2m) 0 )
0 01, m + 1;m, 2m)]"

4)

9 =

Further, let D,(7) represent the determinant & with elements
axr replaced by elements a;. Also let D, (¢, j) denote @ with
a and ax replaced by ax; and ay; respectively. Similarly, we
represent the determinants involving b by D/ (¢) and D,/ (3, j).
After making certain algebraic reductions, we are able to ex-
press the product matrices 8’=V$ and 3=® in concise form:

82 f = ( (a'1, 1; m, m) 0 )

0 '1, 1; m, m)
((a”l, 1;m,m) 0 )
M = )
0 @"1,1;m,m)
where
1 m—1 m
aif = - Z Z arsDys(m + i, m + j),
@ r=1 s=r+l1
1 m—1 m
bif =— 2 2 BrDid (m+ i, m+ ),
b r=1 8=ril
and

m

—b-" Z m+i,sDa' (m + i) .

QIIH

Emwm+abw=

We summarize these results in a theorem.

THEOREM 2. Given the self-adjoint differential equation L(u)
=0, defined by (1), where the coefficients are of class C* and we as-
sume pn(x)#0 in the interval (a Sx=<Db); and given a set of 2m
linearly independent Sturmian boundary conditions:
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2m 2m
Ui(a) = Zakiu“—”(a) =0, Ui(d) = Ebkiu““)(b) =0,

t=1 t=1

(k=112;"':m):

in which |ar|, |brs| %0 for s=1,2, - - -, m; the condition for
self-adjointness of the system thus defined, that is, that the matrix

(AT'A)'=MATIA; — 22 WAT1IA, + =@

be symmetric, reduces by the removal of common factors to the fol-
lowing m(m—1)/2 conditions at each end point:

m—1 m m
Ti(a) =25 2 anDulm + iym+j) + LamjDi(m + i)
r=1 s=r4l 8=1

— DamtiDo(m + §) = 0,

8=1

m—1 m m
Tii() =2, 2 BrDid (m+ iym =+ j) + D BumiieDd (m+ )

r=1 s=r+l =1

- ZBm+i,sD3’ (m +]) =0, (i< j=m),
s=1

in which the abbreviations defined in (3) and (4) are used.

ExaMpLE 1. m =1. According to the requirements of Theorem
2 this system is always self-adjoint. It is of interest to check this
result by direct calculation.

b
[ bLw - ur@las = (@ — w)).
¢ = U V44 UVs 4 UsVy + Uy,

where Ui=anu(a)+anu’(a), Us=>buu(b) +bwuu’(d). Further we
assume Uz;=u'(a), Us=u'(d); then

Vi= p1(0)[6110(8) + 100'(8)]/b1s,
Vs = — pi(a)[anw(a) + a199'(a)]/an1.

Since Vyand V; are essentially Us and Uy, respectively, the sys-
tem is self-adjoint.
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EXAMPLE 2. m =2,

a3 Q14 a3 A1z
Ti(a) = pa(@) | | = pa(a)
Q23 (a4 A23 Q22
Q14 Q12 Q11 G4
+ 94 (a) — p2(a) ‘ =0,
Q24 Q22 Q21 G24
s b4 | ‘ b1z byg
— T12(b) = b - b
12(0) = p1(b) b23 624 22(0) Bas o
b bis
| 20 - po| | -o.
PO, 522 2O by b

4. Odd-Order Systems. In general we shall use the same
method but some modification is required. Let L(%) represent
the anti-self-adjoint differential expression

(5) L(u) = (pw)™ + (pa—gw) "™ + - - - + (p1)’ + purst™
+ paot™ B 4o+ ol

where # is any positive odd integer, p;(x) is of class C?, and p,(x)
#0 in the interval (e =x=<b). Along with

L(u) =0

is given a set of linearly independent boundary conditions

n

U, = Z{ akiu(i_l)(d) + bkiu(i_l)(b>} =0, (k =12, n)-

1=1
In our usual notation the product matrix ’=®$ may be written

¥m = :1— (a'1, 1; n, n), where a;/ = rr(,l)D,(i)D.(j).
A12 r,8=1
Since = is not skew symmetric for the odd-order system, the
further reduction by removal of a common factor is no longer
possible. We state these results more concisely in the following
theorem.

THEOREM 3. Given the anti-self-adjoint differential equation
L(u) =0, defined by (5), where the coefficients p;(x) are of class C*,
and p,(x) #0 in the interval (a Sx=b), and given a set of n linear
boundary conditions
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n

Ur= Z{aa (@) + bun0@)} =0, (k=1,2,---,n),

i=1

where the determinant A,=|qi;| is of rank n; the condition for
self-adjointness of the system thus defined, that is, that the matrix

(AT'As) =W AT Ay — 2 W AT Ay + =@
be skew symmetric, reduces to the following n(n+1)/2 conditions:

oW, ) N
Ti= 2w D(OD()) = A1 Lo Di(j)

7,s=1 r=1
B C Uy L
— 4 Zwir D.(i)+ Ay =0, (12 j=n).
r=1

To illustrate the theorem let us consider the first-order system
(]7114)/ + plu' = 0, duu(d) + buu(b) = 0.
Assume A4;=0by; then we have 4;=an, and

(1) (2)
mu Di(1) + Ay = 0 = aupi(b) — bups(a).

5. Special Cases. If we assume that in the # boundary con-
ditions the sets of terms involving the point ¢ are linearly inde-
pendent, the condition for self-adjointness becomes

(AT1A2)'m DA Ay + =@ = 0,
subject to the following definitions:*

Al = (al, 1; n, ﬂ), A2 = (bla 1; ", ")’

((al, 1;n, n) 0 ) (‘J‘!(l) ﬂ(3)>
i 0 B1, 1; n, n) T \x® x@)

If we let D,(i) denote the determinant A; with the elements
ax replaced by the elements b;;, the product matrix 3’=V8 may
be written

(6)

)
* Oy = Oty = ZGumn-(:l) (a); Brs = Bsr = '—ZGmPhni(f(b):

where G = (= 1 (2m —ks+1) ey (Zm —kr+1)’

if k=2m—r—s5+220and 0<m=(n—1)/2.
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1 n
§nf = ) (a’1,1; n, %), where a;/ = 2 anD.(i)D,(j).

1 r,8=1
These results may be stated in a corollary.

COROLLARY. If in Theorem 3 we assume that the determinants
4,=|ai;| and Ay=|b;| are of rank n, then the condition for self-
adjointness of the system thus defined reduces to the following
n(n+1)/2 explicit conditions:

n

Ti;= D, anD(i)D(5) + A2Bij =0, (isj<n).

r,8=1
The quantities o, and B,s are obtained from the relations (6).
An example will suffice to illustrate the corollary. For n=1,
(p1)’ + p1w’ = 0, anu(a) + byu(d) = 0.

One condition for self-adjointness is specified, namely:

Ti = pi(b)ass — pa(a)bsy = O.
In verifying this result by direct calculation we have
(1, v) = 2p1(0)v(0)u(d) — 2p1(a)v(a)u(a) = UV + UsVy,
where Uy =anu(a)+buu(b) and we let Us=u(b). We find
Vi = 2p:1(8)v(d) + 2p1(a)v(a)bi1/a11.

Obviously for V; to be essentially U; the condition stated above
must hold.

In considering odd-order systems with Sturmian boundary
conditions it is sufficient to observe that the conditions per-
taining to the end points are unequal in number; consequently
self-adjointness of such systems is impossible.
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