
FUNCTIONS O F EXPONENTIAL TYPE* 

BY R. D. CARMICHAEL 

1. Definition and First Properties. If f(x) is an analytic func
tion which is regular at x0 and Xi, then by expanding f(x) in 
powers of x — x0 and suitably dominating the expansion it is 
easily shown that 

limsup) jf ( n )(#0) |1 / n = Hmsupl f(n)(xi)\l/n, 

where the superscripts denote derivatives with respect to x. In 
the proof it is convenient to carry out the argument first for the 
case in which the first of these superior limits is finite. If these 
superior limits have the finite value q, (g^O), then ƒ(x) is an 
integral function ; in such a case we shall say that ƒ(x) is of ex
ponential type f q. This terminology is justified by the following 
fundamental theorem. J 

THEOREM 1. A necessary and sufficient condition that the in
tegral function f (x) shall be of exponential type qis (1) that num
bers a shall exist for which it is true that for every positive number 
e there exists a quantity M, depending on e and a in general but 
independent of x, such that for all (finite) values of x we have 

(1) | / ( * ) | < AT«<*+«>i*i, 

and (2) that q shall be the least possible value for such numbers a. 
Moreover y when f (x) is of exponential type q, we have 

(2) | ƒ<">(*) \ < M(q + €)»«<(r+«>l*l, (n = 0, 1, 2, • • • ), 

where M is independent of x and n. 

The demonstration is readily constructed by aid of (2) which 
is easily proved by use of the expansion of f(n)(x) in powers of x. 

* An address delivered by invitation at a meeting of the American Mathe
matical Society at Cincinnati, December 1, 1933. 

t The term exponential type is taken from a paper by G. Pólya, Analytische 
Fortsetzung una konvexe Kurven, Mathematische Annalen, vol. 89 (1923), pp. 
179-191. 

Î See p. 361 of a paper by R. D. Carmichael, Summation of f unctions of a 
complex variable, Annals of Mathematics, vol. 34 (1933), pp. 349-378. 
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The proofs of the following three theorems may also be obtained 
without difficulty. 

THEOREM 2. If fix) and g{x) are two functions of exponential 
type not exceeding q and if a is a constant, then the function h{x), 

J a 

is of exponential type hot exceeding q. 

THEOREM 3. If fix) is of exponential type q and if the radius p 
of convergence of the power series ^akt

k is greater than q, then the 
series 

00 

is uniformly convergent in any finite region whatever of the x-plane 
and defines a sum-function gix) of exponential type not exceeding 

Q-

THEOREM 4. Let fix) be of exponential type not exceeding q and 
let it have the period a. Let n denote the greatest integer not exceeding 
\a\q/i2ir). Then fix) has the f or m 

n 

fi%) = Z) cke
2krixla, 

k=—n 

where the crs are constants. Moreover every function fix) of the 
latter form is of exponential type not exceeding q and is periodic 
with period a. 

The following elementary propositions are readily established 
either by aid of the fundamental Theorem 1 or more directly by 
means of what is immediately involved in the definition.* 

A. If fix) is of exponential type q, then all the derivatives 
f(n) ix) are of exponential type q. A similar proposition holds for 
all functions obtained from ƒ ix) by repeated indefinite integra
tion with respect to x. 

* For contributions to the theory of functions of exponential type see 
(among others) the following: Hilb, Mathematische Annalen, vol. 82 (1920), pp. 
1-39, vol. 85 (1922), pp. 89-98; Perron, ibid., vol.84 (1921), pp. 31-42; Pólya, 
ibid., vol. 89 (1923), pp. 179-191; Pincherle, Acta Mathematica, vol. 48 (1926), 
pp. 279-304 (first published in 1888); Hurwitz, ibid., vol. 20 (1897), pp. 285-
312. 
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B. If fi(x) and f2(x) are of exponential type not exceeding q} 

then aifiix)+a2f2ix) is of exponential type not exceeding q, the 
quantities a\ and a2 being constants. 

C. If fi(x) and f2ix) are of exponential types qi and q2, re
spectively, and if qi>q2, then fi(x)+f2(x) is of exponential type 

ffi. 

D. If f{x) is of exponential type q, then f(ax + b) is of ex
ponential type \a\q, when a and b are constants. 

E. If fi(x) and/2(x) are of exponential types q\ and q2, respec
tively, then the product fi(x)f2ix) is of exponential type not 
exceeding qi+q2. 

F. Rational integral functions are of exponential type zero. 
G. If a is a constant, the function eax is of exponential type 

\a\. 
2. One-to-One Correspondence with Functions Analytic at a 

Point. The following theorem appears incidentally in work by 
Pincherle (loc. cit.) and Hurwitz (loc. cit.). 

THEOREM 5. Let f{x) be a function of exponential type q ana 
write 

(3) fix) = a0 + a\X + #2#2 + • • • . 

Form the function 

a0 a\ n\an 

(4) d>it) = _ + _ + . . . + + . . . . 
/ t2 tn+1 

The last series converges when \t\ >q. Let C be a circle about O as 
center and of radius greater than q. Then 

(5) f(x) = ; f ext<t>it)dt. 
2iri J c 

The proof of the theorem is almost immediate. One has only 
to replace #(/) under the integral sign by its given expansion, 
multiply this series term by term by ext and integrate term by 
term; the result is the power series expansion of fix). 

This theorem exhibits an interesting one-to-one correspond
ence between functions of exponential type and functions 
which are analytic at a point and vanish there. Without loss of 
generality we may take this point of analyticity at infinity. If 
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<t>(t) denotes such a function, then it may be written in the form 
(4) ; then the associated function ƒ(#) defined by (5) has the 
expansion (3) and is of exponential type. 

When ƒ(x) and <j>{t) are associated in the way indicated it is 
readily seen that every property of one of the functions is in 
some way reflected in a corresponding property of the other. 
It is perhaps most natural to pass from properties of </>(/) to 
properties of / (x) , using relation (4) as the point of departure 
for the analysis. One may therefore expect a direct reflection of 
the properties of <j>(i) in those of fix). The relation in the op
posite order seems to be less direct, but it is certainly fully im
plied in the indicated correspondence. I t appears that very little 
has been done in developing the indicated correspondence of 
properties of the two functions. But the problem is certainly a 
feasible one ; in some respects it is no doubt difficult. I t is rather 
intriguing. 

3. Expansions in Bernoulli-Hurwitz Functions. A very natural 
expansion theory of functions of exponential type is afforded by 
series of Bernoulli-Hurwitz functions (Carmichael, loc. cit., 
pp. 371-378). The latter functions are extensions of the Ber
noulli polynomials Bv(x) defined by the identity 

tetx * xv 

el — 1 v=3o v\ 

whence we have 

v\ r eix dt 
B,(x) = — ~ - —, (y = 0, 1, 2, • • • ), 

2TI J C el — 1 t' 
where C is a circle about 0 as center and of radius less than 2ir. 
The Bernoulli-Hurwitz functions Bv,r(x) we may define (see 
Hurwitz, loc. cit.) by the relations 

v\ r etx dt 
(6) jB,ir(*) = — - I - — , (*,r = 0, 1, 2, . . - ), 

2iriJcr e — 1 tv 

where Cr denotes the circle of radius 7r(2r + l) about 0 as a 
center. Then we have 

B,,o(x) = B,(x), (v = 0, 1, 2, • • • ), 
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BVtr(x) = Bv(x) H — X) k~v{e2k*ix + ( - lye-2"™}, 
(2iri)v

 k^i 

fr = 0 , 1 , 2 , - •• ; r = 1 , 2 , . . . ) . 

Let us now consider series of the form 

00 

(7) Z C,B,,r(x)/vl, 

where r is a fixed non-negative integer and the coefficients cv are 
independent of x. By means of an analysis which is not difficult 
one is led to the following theorems. 

THEOREM 6. If the series (7) converges [converges absolutely] 
for x=xi and x=x 2 , where 4 ( r + l ) # i is not an odd integer and 
2(r + l)#2 and 2(r + l)(#i—x2) are not integers, then in every finite 
region of the x-plane this series converges [converges absolutely] 
and uniformly. Moreover the series 

00 

]£ cvr
v 

converges [converges absolutely] f or t= ±2wi(r + l) and hence also 
when \t\ >27r ( r+ l ) . 

THEOREM 7. No function F(x) can have two distinct expansions 
in series of the form (7) for the same value of r. 

THEOREM 8. If a function Fix) has a convergent expansion in 
the form (7), then Fix) is of exponential type not exceeding 
27TO + 1 ) . 

THEOREM 9. Any given f unction Fix) of exponential type q such 
that 27r r^g<27r( r+ l ) has an expansion of the form 

r oo 

(8) F(x) = £ W2k'ix + E cvBv,r(x)/i>\, 
k——r v = l 

where the a's and c's are (uniquely determined) constants. 

COROLLARY. The function Fix) has an expansion of the form 
(8) with r replaced throughout by r+py where p is any non-
negative integer. In each case the finite sum as to k consists of cer
tain terms of the Fourier series for F(x) in the interval (0, 1). 
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THEOREM 10. Let F(x) be any given function of exponential 
type 2 x 0 + 1). Write 

(9) cv = FC-D(l) - F<^>(0), {v = 1, 2, • • •). 

Then a necessary and sufficient condition that F(x) shall have an 
expansion of the form (8) is that each of the following series shall 
converge : 

* ( - l)avcv 

£ —-— > (« = o,i). 
ZÎ ( 2 W ) ' ( r + l ) " 

The theorems and corollary in this section afford necessary 
and sufficient conditions for the expansion of functions in series 
of Bernoulli-Hurwitz functions. Such series together with a 
finite number of terms from the indicated Fourier series afford 
expansions, valid throughout the finite plane, of any given func
tion of exponential type a ; and no function outside of this class 
has such expansions. I t follows therefore that series of Bernoulli-
Hurwitz functions afford very natural means for the representa
tion of functions of exponential type. 

From equation (8) and the fact that 

BPtr(x + 1) - Bv>r(x) = vxv~l, (v = 1, 2, • • • ), 

it follows that 

F(x+1)-F(x) = Y,c9
 %V , 

_ i (v - 1)1 

whence one concludes that the coefficients cv in (8) have the 
values given in (9). 

The case f = 0 of the foregoing expansion theory has been 
treated by Nielsen* by a method different from that employed 
by Carmichael in the general case. 

4. Other Expansions. A very natural generalization of the ex
pansion theory of the preceding section comes readily to mind. 
Let g(f) be any function which is analytic at the point 2 = 0 and 
has there the value g(0) = 1. Then the identity 

etx « tv 

-- « Z PM -
gf) F-0 Vl 

* Nielsen, Mathematische Annalen, vol. 59 (1904), pp. 103-109. 
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defines the polynomials Pv(x) of degree v for v = 0, 1, 2, • • • . If 
C denotes a sufficiently small circle about 0 as a center, we have 

v\ r etx at 
Pv(x) = ; (y = 0, 1, • • • ) . 

2iriJc g(t) T+1 ' ' 

When g(t) = (el — l)/t, we have Pv(x) =Bv(x) and hence are 
led to the theory of the preceding section. If g{t) =eat, we have 
Pv{x) = (x — a)p/v\, so that the expansion theory in this case is 
that of power series. These two examples are sufficient to show 
that there is a great diversity among the expansion theories 
which may arise from this point of view. The character of the 
several classes of series will be determined primarily by the 
additional properties assigned to the function g(t). 

In order to have an illustration of the results which may 
emerge, let us consider the case in which g(t) is further restricted 
to be analytic in the region 11\ < p and to be different from 0 in 
this region except for a zero of order one at a point a of this re
gion. Then if we write 

pXt pax oo *v 

where g'(t) denotes the derivative of g(t) with respect to t} we 
have 

Qv{x) = Pv{x) + v\oCv~xeaxlg'{a). 

By aid of the defining relations for Pv{x) and Qv(x) we readily 
obtain dominating relations by means of which the following 
rather remarkable theorem is easily established. 

THEOREM 11. In the present case, if the series 

00 

YJ cvPv(x) 

converges [converges absolutely] at any single point x = xi, then 
in any finite region whatever it converges [converges absolutely] 
and the convergence is uniform. 

The particular case g(t) = \—t yields expansions in terms of 
the functions 
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X X2 Xn 

1+ —+ — + ••• +— ' 
1! 2! ft! 

These are sections of the power series expansion of ex. 
Returning to the general case and differentiating both mem

bers of the defining relation for the polynomials Pv(x), we see 
that Pv(x) =P'v+i(x). These polynomials therefore belong to an 
interesting class of polynomials. 

Let us now consider the case when g(t), with g(0) = 1, is an 
integral function having an infinitude of zeros. Let Xi, X2, • • • 
denote the absolute values of these zeros in ascending order of 
magnitude, so that 0<Xi<X 2 < • • • . Let Cr, (r = l, 2, • • • ), 
denote a circle about 0 as center and of radius greater than Xr 

but less than Xr+i. Let Co denote a circle about 0 of radius less 
than Xi. Define the functions Pv,r(x) by the relations 

These obviously afford generalizations of the Bernoulli-Hur-
witz functions. I t would be a matter of considerable interest to 
have developed a comprehensive theory of the expansion of 
functions in series of the form 

00 

/ / CpJr v ,r\X) 

for fixed values of r. I t would also be of interest to consider the 
theory for the case when r is a function of *>, as, for instance, the 
case when r — v. The first of these investigations will generalize 
the results of the previous section and will lead to other types 
of expansions for all functions of exponential type. The latter 
(see Hurwitz, loc. cit.) will include expansion theories for all 
integral functions. 

Other expansion theories of still more general type would 
arise from replacing etx in the foregoing formulas by more 
general functions of x and t. Some classes of cases which thus 
arise are of considerable interest. 

The problems suggested in this section are now being investi
gated by some of my younger colleagues at the University of 
Illinois. 
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5. Simultaneous Expansions in Composite Power Series. For 
w > l w e consider the question of expanding n integral functions 
fi(%)if2(x), ' ' ' ,fn(x) simultaneously in composite power series, 
that is, we consider the problem of representing these functions 
in the form 

oo n 

(10) ƒ,(*) = E Z Cik(x - a,/)*, (v = 1, 2, • • • , n), 

where the coefficients £,-& are to be independent of both x and 
v. We impose the further condition on the coefficients c^ that 
they shall be such that the series in the equations 

00 

(11) gj(x) = £ cihx
h
9 (j = 1, 2, • . • , »), 

shall converge for all finite values of x, thus making the func
tions gj(x) integral. Furthermore we subject the given con
stants aVj to the condition that the determinant A(/) whose 
element in *>th row and j t h column is exp ( — aVjt) shall not be 
identically zero as a function of /. 

For n = 1 the problem evidently reduces to the classical prob
lem of expansions in power series. We shall suppose throughout 
t h a t n > l . 

We have the following theorems.* 

THEOREM 12. If fi(x), f2(x), • • • , fn(x) are any given integral 
functions and if the constants aVJ- are such that the determinant A(t) 
has the property described above, then these functions fv(x) have 
simultaneous expansions of the form (10), where 

l i m | ^ | 1 / f c = 0. 

THEOREM 13. If the functions fi(x), fï(x), • • • , fn(x) are of 
exponential type not exceeding q, one at least of them being precisely 
of type q, and if the constants aVJ- are such that the determinant A(t) 
has the property described above, then the functions fv(x) have 
simultaneous expansions of the form (10) such that the associated 
functions gj(x) of (11) are of exponential type and indeed such 
that these functions gj(x) are of exponential type not exceeding qf 

one at least of them being precisely of type q. 

* R. D. Carmichael, Transactions of this Society, vol. 35 (1933), pp. 1-28. 
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It is not difficult to obtain formulas for suitable coefficients 
Cjk to be employed in the expansions (10). Only in exceptional 
cases is it true that these expansions are unique. Even with the 
strongest conditions imposed on the coefficients Cjk in the latter 
part of Theorem 13 there is still room for more than one deter
mination of these coefficients. What degree of arbitrariness 
exists in the determination of these coefficients and what ad
ditional conditions might be imposed to render them unique 
are problems which appear not to have been solved. I t seems, 
however, that they are of such nature as to be amenable to 
treatment, in large measure at least, by methods which are al
ready existent. In some special cases, particularly for n = 2, they 
are not difficult. 

As an application of the theorems to the case when an = a, 
ai2 = &, a2i = 0 = a22, where a^b, we have the following result. 
An arbitrary integral function ƒ (x) may be expanded in the form 

00 

ƒ(*) = Z {<*(* - aY + yk(x - ft)»}, 

where the sums ck + yk, (& = 0, 1, 2, • • •)» have any preassigned 
values subject to the condition that |c/c+Yfc|ilk shall approach 
zero with 1/k. This proposition may be given a still more precise 
form if f{x) is restricted to be a function of exponential type 
(see Carmichael, loc. cit., p. 19). 

The theory just indicated is confined to the case of simul
taneous expansions of integral functions. In the case of ordinary 
power series the natural region of convergence is a circle and 
the expansion theory exists for all functions which are analytic 
at a point. This raises the question whether there exists a useful 
and interesting theory of simultaneous expansions in composite 
power series in the case of n functions which are analytic in a 
given finite region. I do not know the answer to this question. 

6. Summation of Functions of Exponential Type. By expand
ing F(x+o>) and G(x+œ) in powers of the given constant co 
by means of the Cauchy-Taylor theorem and employing the 
operator D to denote differentiation with respect to x, the equa
tions 

(12) F(x + o>) - F(x) = «0(a), G(x + o>)+ G(x) m 2<K*), 
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may be written in the symbolic forms 

(e"D - l)F(x) = ««(*), (e"D + l)G(x) = 20(x), 

whence one has the symbolic formal solutions 

(13) F(x) = œ(e»D - 1)~V(*), G(x) = 2(e»D + l ) - ty (*) . 

By aid of the expansions 

» 1 1 A f 1 1 ) 
= o) + — + £ 1 + f 

<?w< — 1 2 / M U + 2vwi/o) t - 2viri/ü>) 
(i4) + t * M ^ i - , 

2 _ _ _ _ ^ A ( 1 1 ) 
w< + 1 co ,_! U + (2*> - l)xi/a> / - (2v - l)iri/co ƒ 

(1S) +|;^-'^,., 

where mis a. non-negative integer (the finite sums as to v being 
omitted when m = 0), the formal solutions (13) lead to the fol
lowing formal solutions : 

e 

(16) 

1 r* 
F{x) = oó(j>(x) + I cj>(u)du 

2 J n. 
A C X 2V7T{U — X) A <»> w " 

+ 2 ^ I cos <t>(u)du + £ Bi — 0 ^ D ( » ) , 

4 A f » (2? — 1)TT(U — x) 4 A r * v - -
G(#) = <j)(x) JLI \ c o s <t>{u)du 

(17) " ~ l J -

where a is any conveniently chosen constant. We shall call (16) 
[(17)] the modified Euler-Maclaurin [Boole-Nörlund] sum 
formula. 

We now have the following theorems (Carmichael, Annals of 
Mathematics, loc. cit., pp. 365, 366). 

THEOREM 14. If <j>{%) is of exponential type not exceeding q 
and if m is the integer defined by the relation 
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2irm 2g I co | q < 2ir(m + 1), 

then the first equation (12) has a solution F(x) defined by the modi
fied Euler-Maclaurin sum formula (16) ; and F(x) is of expo
nential type not exceeding q. If </>(x) is of exponential type q, then 
F(x) is of exponential type q. 

THEOREM 15. If <j>(x) is of exponential type not exceeding q and 
m is the integer defined by the relation 

(2m - 1)TT ^ | co | q < (2m + 1)TT, 

then the second equation (12) has a solution G(x) defined by the 
modified Boole-Nörlund sum formula (17); and G(x) is of ex
ponential type not exceeding q. If 4>(x) is of exponential type q, 
then G(x) is of exponential type q. 

When cj)(x) is of exponential type q we shall say that a solu
tion of the first [second] equation (12) is a principal sum [prin
cipal alternating sum] of cj>(x) if the solution is itself of exponen
tial type q. 

THEOREM 16. If <j>(x) is of exponential type q and if m is the 
greatest integer not exceeding |co|ç2/(2x), then the most general 
principal sum of <j>(x) is the algebraic sum of any particular 
principal sum (always existent) and the function 

m 

]T Cke
2kirixf<*, 

where the c's are arbitrary constants. 

THEOREM 17. If <j>(x) is of exponential type q and if m is the 
greatest integer not exceeding |+|co|c2/(27r), then the principal 
alternating sum of 4>(x) is unique when m = 0 and is otherwise the 
algebraic sum of a particular principal alternating sum (always 
existent) and the function 

m 

]T CkeW-l)Tixl» ^ 
k=— m+1 

where the c's are arbitrary constants. 

The last two theorems for the case m = 0 are given by Hilb 
(loc. cit., pp. 90-91). In the general case they are, in view of 
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Theorem 1, equivalent to theorems obtained by J. R. Purdy* 
under hypotheses of a different form. 

7. Generalizations of the Preceding Section. We consider the 
problem of solving the system 

n 

(18) X) Cyjgii* + avj) = *>(*), (i> = 1, 2, • • • ,») , 

of functional equations (generalized difference equations with 
constant coefficients), where the functions <j>v{x) are n given 
integral functions and the n functions gj(#) are to be deter
mined subject to the requirement that they shall be integral 
functions. In this system the coefficients cVJ- and the additive 
terms av]- in the arguments are given constants. 

We define the symbolic operator E (a) by the relation 

E(a).f{%) =f(x + o). 

The product ocE{a) j8JE(6) is by definition equal to afiE(a+b). 
We define the symbolic determinant A, 

A = | cVjE{avj) |, 

whose element in *>th row and j t h column is c„,\E(a„/), as the 
symbolic operator obtained by expanding the determinant form
ally as if its elements were ordinary algebraic quantities. The 
expanded determinant may be written as a linear homogeneous 
function of suitable operators E with constant coefficients. By 
h(t) we denote the function 

h(t) = e-xt-A-ext. 

When h(t) is not identically zero we shall say that system (18) 
is non-singular. By AV3- we shall denote the cofactor of the ele
ment in the ^th row and jth column of A. Then Av9- is a poly
nomial in operators E with constants coefficients. 

We write the power series expansion of <j>v{x) in the form 

00 

4>'(x) = 12 svkx
k/k\, (v = 1, 2, • • • , n). 

/c=0 

* J. R. Purdy, The Treatment of Finite Integration by Means of the Cauchy 
Integral Theorem, (unpublished) Illinois dissertation, 1930. 



254 R. D. CARMICHAEL [April, 

When the functions <t>v{x) are of exponential type not exceeding 
q, we write 

SvO Sul Sp% 

^ ) = T + T + ^ + - ' - ' ( " - 1 , 2 , • • • , » ) . 

These series define the functions \pv(t) when \t\ >q. 
Let r be a positive number exceeding q such that the circle 

Cr of radius r about 0 as a center passes through no zero of the 
function h(t). By Av$ext denote the result of operating with 
AVj on ext considered as a function of x. Form the functions 

(19) «,(*) = — Z 0 W * 0 ^ W TT"' 0' - 1, 2, • • • , »). 
2iciJcr *-i *(0 

If the functions <£„(x) are of exponential type g or less and at 
least one of them is of type q, then a solution of (18) will be called 
a principal solution if no function in it is of exponential type 
exceeding q. I t is clear that at least one of the functions in the 
solution must be precisely of type q. 

Now (see Carmichael, Transactions, loc. cit., p. 7) by aid of 
certain symbolic processes we are led to the following theorem. 

THEOREM 18. When the <t>v(x) are f unctions of exponential type 
not greater than q and one at least of them is of type q, then system 
(18), when it is non-singular, admits as a principal solution the 

functions gj(x) defined by (19) for r = q + e, where eis a small posi
tive quantity such that h(t) has no zero in the ring bounded by Cr 

and the circle \t\ =q. 

By an extension of the argument it may be shown that the 
non-singular system (18) admits an integral solution whenever 
the <t>vix) are integral functions. 

In the case to which Theorem 18 relates methods are at hand 
for determining all the principal solutions of (18) and indeed all 
solutions of exponential type. The singular cases, excluded from 
Theorem 18, call for additional investigation; but they seem to 
be amenable to successful treatment. These problems are now 
being investigated by one of my younger colleagues. 

8. Differential Equations of Infinite Order. Let us consider the 
problem of solving the following linear differential equation of 
infinite order with constant coefficients: 
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(20) a0y + aiy' + a2y" H = 0 , (a0 ^ 0 ) . 

When the coefficients av are given and y is an analytic solution 
valid at x = x0, then the left member of (20) must be a converging 
series ; hence we must have 

l imsupl a„y<>v)(xo) \llv S 1. 

When this superior limit is 1 there is still doubt concerning the 
required convergence. Hence, in a first study of (20), it is na
tural to require that the given superior limit shall be less than 1. 
Then it is natural to impose on the given coefficients the con
dition 

lim sup | av\
llv = p < oo . 

v= oo 

One is thus led to seek solutions y of (20) such that 

i i 1 
limsupl y(v)(x) \l,v < 

v= oo p 

Such functions are of exponential type. Therefore functions of 
exponential type are naturally encountered in the study of the 
simplest differential equations of infinite order. 

The central theorem* which emerges in the investigation of 
the problem thus suggested is the following. 

THEOREM 19. In the linear homogeneous differential equation 
(20) of infinite order, suppose that the given coefficients av are such 
that the junction F(z), 

F(z) = a0 + axz + a2z
2 + • • • , 

is analytic in the region \z\^q, (q>0). Let solutions y{x) be 
sought of exponential type not exceeding q. If F(z) has no root in 
the region \z\ Sq, the only solution y(x) of the indicated character 

* For the theory of differential equations of infinite order the reader may 
consult the following papers and others referred to in them: Hilb, Mathe
matische Annalen, vol. 82 (1920), pp. 1-39; vol. 84 (1921), pp. 16-30, and pp. 
43-52; vol. 85 (1922), pp. 89-98; Perron, Mathematische Annalen, vol. 84 
(1921), pp. 1-15, and pp. 31-42; Ritt, Transactions of this Society, vol. 18 
(1917), pp. 27-49; Davis, Annals of Mathematics, vol. 32 (1931), pp. 686-714; 
Lewis, Transactions of this Society, vol. 35 (1933), pp. 792-823. The results 
which we present are essentially in the form given by Perron. 
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is y(x) = 0 . If F(z) has n zeros (n>0) in the region \z\Sq. {mul
tiple zeros multiply counted) and if P(z), P(z) =zn+gizn~1 + • • • 
+gn, is a polynomial having the same zeros as F(z) in this region 
(with the same multiplicities), then the solutions y(x) of the in
dicated character are the same as the solutions of the following 
equation of finite order : 

u(n) + glUinr-l) + • • • + gn_lU' + gnU = 0. 

An elegant and rather comprehensive theory has been de
veloped by Hilb, Perron, and others for the solutions of ex
ponential type admitted by equations of the form 

00 

Z gr(*)yw = fix), 

where f(x) is a given function of exponential type and the gv(x) 
are given polynomials of degrees not exceeding a given integer 
p. For the results the reader may conveniently consult Perron 
(loc. cit.). I t is thus seen that some of the most important in
vestigations of the theory of differential equations of infinite 
order are essentially bound up with the theory of functions of 
exponential type. In particular, there are classes of cases in 
which one is able to obtain the general solution of exponential 
type. 

That homogeneous equations even with constant coefficients 
may have solutions not of exponential type is perhaps to be 
expected; it is proved by Ritt (loc. cit.) by means of an example. 
The problem of constructing a comprehensive theory of a class 
of solutions not of exponential type seems to be difficult. 

9. Exponential Sums. An interesting particular class of func
tions of exponential type is constituted by functions of the form 

n 

fc-0 

where the a 's are constants and the -4's are polynomials in x. 
These functions are rich in properties and have numerous con
nections of importance. An expository discussion of the distri
bution of their zeros has been given by R. E. Langer,* with ref
erences to the literature. I t seems highly probable that many 

* Langer, this Bulletin, vol. 37 (1931), pp. 213-239, 

file:///z/Sq
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properties of the distribution of these zeros will admit of in
teresting generalizations to more extended classes of functions 
of exponential type. The paper of Pólya, already cited, contains 
results which seem to point the way to a more extended investi
gation of this problem. If results of this sort could be obtained 
in a comprehensive form they would have intimate connections 
with several investigations of marked interest. 

10. Expansions in Series of Exponential Functions. The ex
pansions here intended have been investigated by Carmichael 
(Transactions of this Society, loc. cit., pp. 21-28), on whose 
work this section is based. Let us denote by h(t) the function 

(21) *(/) - ci^i ' + c2e
a^ + • • • + cne

ant, (n > 1), 

where the a's are different constants and the c's are constants 
different from zero. Let P be the smallest convex polygon, in the 
complex plane, containing the points ai, a2, • • • , an; this poly
gon may in special cases reduce to a straight line segment. Let 
Q be the polygon* obtained by reflecting P through the real 
axis. 

Let G, C2, • • • be a set of different closed contours in the 
x-plane such that any given point on C3- is either interior to 
Cj+i or on Cj+i and let these contours have the additional proper
ties prescribed in the memoir cited (Carmichael, loc. cit., p. 23). 

Let ip(t) be any function of / which is analytic at infinity and 
vanishes there and let us write 

(22) m =21 + 71+... , (\t\>q). 
t V 

Let r be an integer such that the contour Cr lies entirely within 
the region of convergence of the series in (22). Form the func
tion Fr(x)y 

(23) Fr(x) = — f «•«{*(/)}-V(0#. 
2iri J cr 

Then Fr(x) is a function of exponential type. 
Let p be any positive integer and form the function Fr+P(x) 

by changing r to r+p in (23). Then it may be shown that 

lim Fr+p(x) = 0 
p=s 00 

* Such polygons P and Q have been employed by Pólya (loc. cit.). 
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when either of the following conditions is satisfied: 
(1) when x is in the interior or on the boundary of P and is 

not a vertex of P ; 
(2) when x is a vertex of P provided in this case that Yi = 0. 
Let Sr+P(x) denote the negative of the sum of the residues of 

the function ext{h(t)}~1\f/(t) in the region bounded by the con
tours Cr+p-i and Cr+p. If the function has no singularity in this 
region, we shall understand that Sr+P(x) is identically zero. In 
all other cases Sr+P(x) is a function of the form ceax or a sum of a 
finite number of such functions. Then we have the following 
theorem (remarkable for the character of the region of converg
ence of the indicated series). 

THEOREM 20. The function Fr(x) defined in (23) has the expan
sion 

00 

(24) Fr{x) = £ Sr+k(x) 
/b=i 

in series of exponential functions, valid for all values of x in the 
polygon P, except that the vertices are to be excluded when YIT^O. 

(There are cases when the series has no other points of con
vergence.) 

When h(t) =el — l, the series in (24) is a Fourier series. The 
polygon P in this case reduces to the interval (0, 1) of the real 
axis. 

The foregoing theorem serves to expand in series (24) any 
function whatever that may be put in the form (23). If ^ ( 0 ) ^ 0 , 
it is evident that any given polynomial in x may be put in the 
form Fi(x) by taking G to be a small circle about 0 as a center 
and by choosing \p(t) properly as a polynomial in 1/t. The func
tion Fi(x)+ constant may also in other cases represent any 
polynomial whatever in x. Hence, in particular, all polynomials 
have expansions in the form (24), valid in polygons P as indi
cated. 

More specific results may be obtained in the case when 

gXt oXt 

(25) = , 
hit) (*»i« - 1)(*>«« - 1) • • • (**« - 1) 

where pi, p2, • • • , pn are n real or complex constants different 
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from zero and such that neither the sum nor the difference of two 
of them is zero. In this case it is convenient to normalize the 
problem by means of certain elementary transformations. If 
pk has a negative real part we may replace Pk by — Pk by multi
plying both numerator and denominator in (25) by —e~pkt 

and then replace x— pk by x. Hence we may (and we do) take 
the real part of each pk to be non-negative. Then the further con
ditions on the p's are that they are different from each other and 
from zero. Then the point zero is on the boundary of the polygon 
P and the greatest real value of a point in P is the sum of the 
real parts of the p's. We assume that 

~ i?r ^ arg pi g arg p2 ^ • • • g arg pn ^ JTT. 

It is easy to show that the points x of P are the following: 

X = Xipi + X2P2 + • • • + AnPn, (0 ^ \k ^ 1, k = 1, 2, • « • , n). 

In what follows we shall suppose that no two of the numbers 
Pk have a real ratio. 

Now we choose (as we may) the contours G, C2, • • • so that 
Ck encloses just k zeros of h{t). Hence the terms Sr+k(x) in (24) 
may all be taken in the form ceax so that we have to do with 
expansions of the form 

oo n 

(26) F(x) = «oo + E Z (a»»*1""*''» + Pkme~*»"•«/>*). 
m—1 k—l 

With each of the functions 

1 plmirixlp, />—2mrix/p1 

(27) 
(k = 1, 2, • • • ,n; m = 1, 2, 3, • • • ), 

let us associate its reciprocal and let us call this associated func
tion the adjoint of the given function. If we multiply any func
tion whatever of the set (27) by the adjoint of any other func
tion in the set, we have a product of the form 

n 
J J e2lkrix(pkj 

fc-1 

where at least one and not more than two of the integers h are 
different from zero. There is a side of the polygon P on which 
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x/pk ranges from 0 to l ; on that side we denote x/pk by Xfe. Then 

f f • ' • f ( Ô e2'*'**) d\id\2 •• • dX» = 0. 
J 0 ^ 0 J 0 \ fc-1 / 

If a like integral is formed with a function of the set (27) and 
the adjoint of that function then this corresponding integral has 
the value 1. Hence we have conditions of biorthogonality gener
alizing those pertaining to the case of Fourier series, here arising 
when n = l. Consequently we have a formal method of deter
mining the coefficients in series (6) for a much more extensive 
class of functions than those for which we have established the 
validity of such expansions. This suggests the generalization of 
the whole theory of Fourier series to the particular class of 
series in (26) if not indeed to the more general class involved in 
Theorem 20. 

Thus we have an indication of an important and extended in
vestigation where the results already known, while interesting 
and important, do little more than set the general problem 
awaiting solution. 

11. Generalizations of the Preceding Section. Suggestions of 
various generalizations of the theory sketched in the preceding 
section come readily to mind. That theory is intimately based 
upon the function h(t) in (21) and on special cases of it. The 
function h(t) is of exponential type. The question arises whether 
there are other functions of exponential type, each having an 
infinitude of zeros, which might replace h(t) in the theory. That 
the answer is affirmative seems almost certain, though the rele
vant investigation has not been carried out. Different classes of 
functions of exponential type may well give rise to different 
expansion theories. The whole problem is deserving of a thor
ough investigation. 

I t should be possible to extend the Birkhoff expansion theory 
along lines parallel to the extension of Fourier series indicated in 
the preceding section and in such a way that the natural re
gions of convergence of the resulting series shall be two-
dimensional rather than one-dimensional. Nothing has been 
done in the direction of this extension. 

Any expansion theory of functions of a single variable, 
developed by such means as are indicated in the preceding sec-
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tion, is readily extensible to the case of functions of any finite 
number of variables. While no striking novelties are to be ex
pected in this theory it is nevertheless worth while to have the 
theory developed. 

12. Two Ways of Scientific Advance. In the preceding sections 
we have ample indications of the fact that the theory of func
tions of exponential type has numerous connections with prob
lems of importance and that many questions concerning them 
are still awaiting investigation. In conclusion we shall indicate 
briefly two ways of scientific advance which are suggested by 
the unanswered questions to which we have referred. 

In one of the ways of investigation we treat problems of just 
as general character as possible. Here the goal is a comprehen
sive theory. The purpose is to open up broad territories of in
vestigation and to show the interconnections of related theories 
which have grown up separately. The problems are so general 
that they seldom lead to specific novelties of method. The solu
tions are likely to arise from extensions of known methods to 
wider problems. 

The other method of investigation relies on the intense study 
of restricted problems. One lives with the ideas and questions 
involved until they become almost incorporated into his per
sonality. Here lies the greatest hope of genuine novelty of idea 
and method, of discoveries which will prompt wide-reaching 
investigations. Intensive study of functions of exponential type 
would be a case in point. Another illustration would be afforded 
by the work of Stieltjes in developing his integral. 

We need to cultivate both methods of investigation. We must 
have comprehensive theories. We should also live intimately 
with restricted problems. The suggestions which we have made 
concerning functions of exponential type are commended to the 
consideration of those who are interested in this second way of 
scientific advance. 
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