SOME DEFINITE INTEGRALS INVOLVING SELF-RECIPROCAL FUNCTIONS BY BRIJ MOHAN MEHROTRA

1. Introduction. In one of his papers, Ramanujan* has proved formally that if

$$
\phi_{\omega}(t)=\int_{0}^{\infty} \frac{\cos \pi t x}{\cosh \pi x} e^{-\pi \omega x^{2}} d x
$$

then

$$
\begin{equation*}
\phi_{\omega}(t)=\frac{e^{-\pi t^{2} /(4 \omega)}}{\omega^{1 / 2}} \phi_{1 / \omega}\left(\frac{i t}{\omega}\right) . \tag{1}
\end{equation*}
$$

An examination of the proof shows that it rests on the fact that $\operatorname{sech}\left[x(\pi / 2)^{1 / 2}\right]$ is self-reciprocal for cosine-transforms. The present investigation was suggested by this fact. The object of this note is to obtain a generalization of (1).

Following Hardy and Titchmarsh, I will say that a function is R_{ν} if it is its own J_{ν} transform, and it is $-R_{\nu}$ if it is skewreciprocal for J_{ν} transforms; also, for $R_{1 / 2}$ and $R_{-1 / 2}$, I will write R_{s} and R_{c}, respectively.
2. Theorem 1. If

$$
\phi_{\omega}(t)=\omega^{1 / 2} \int_{0}^{\infty} e^{-\omega^{2} x^{2} / 2} f(x) \cos t \omega x d x
$$

where $f(x)$ is R_{c} and is such that $\int_{0}^{\infty}|f(x)| d x$ converges, then

$$
\begin{equation*}
\phi_{\omega}(t)=e^{-t^{2} / 2} \phi_{1 / \omega}(i t) . \tag{2}
\end{equation*}
$$

We have
(3) $\phi_{\omega}(t)=\left(\frac{2 \omega}{\pi}\right)^{1 / 2} \int_{0}^{\infty} e^{-\omega^{2} x^{2} / 2} \cos t \omega x d x \int_{0}^{\infty} f(y) \cos x y d y$.

This double integral is absolutely convergent, as we see by comparison with

[^0]$$
\int_{0}^{\infty} e^{-\omega^{2} x^{2} / 2} d x \int_{0}^{\infty}|f(y)| d y .
$$

Hence we may invert the order of integration in (3). Thus

$$
\begin{aligned}
\phi_{\omega}(t)= & \left(\frac{2 \omega}{\pi}\right)^{1 / 2} \int_{0}^{\infty} f(y) d y \int_{0}^{\infty} e^{-\omega^{2} x^{2} / 2} \cos t \omega x \cos x y d x \\
= & \left(\frac{\omega}{2 \pi}\right)^{1 / 2} \int_{0}^{\infty} f(y) d y \int_{0}^{\infty} e^{-\omega^{2} x^{2} / 2}\{\cos (y+t \omega) x \\
& +\cos (y-t \omega) x\} d x \\
= & \frac{1}{2 \omega^{1 / 2}} \int_{0}^{\infty} f(y)\left\{e^{-(y+t \omega)^{2} /\left(2 \omega^{2}\right)}+e^{-(y-t \omega)^{2} /\left(2 \omega^{2}\right)}\right\} d y \\
= & \frac{1}{2 \omega^{1 / 2}} \int_{0}^{\infty} e^{-y^{2} /(2 \omega)^{2}-t^{2} / 2}\left(e^{-y t / \omega}+e^{y t / \omega}\right) f(y) d y \\
= & \frac{e^{-t^{2} / 2}}{\omega^{1 / 2}} \int_{0}^{\infty} e^{-y^{2} /\left(2 \omega^{2}\right)} \cosh \frac{y t}{\omega} f(y) d y
\end{aligned}
$$

which establishes (2). As an illustration, (2) may be verified for $f(x)=e^{-x^{2} / 2}$.

3. Theorem 2. If

$$
\psi_{\omega}(t)=\omega^{1 / 2} \int_{0}^{\infty} e^{-\omega^{2} x^{2} / 2} f(x) \sin t \omega x d x,
$$

where $f(x)$ is R_{s} and is such that $\int_{0}^{\infty}|f(x)| d x$ converges, then

$$
\begin{equation*}
\psi_{\omega}(t)=-i e^{-t^{2} / 2} \psi_{1 / \omega}(i t) . \dagger \tag{4}
\end{equation*}
$$

This can be proved in exactly the same way as Theorem 1. To illustrate this theorem, (4) may be verified for $f(x)=x e^{-x^{2} / 2}$.

Moradabad, India
\dagger Theorems 1 and 2 themselves depend upon the fact that $e^{-x^{2} / 2}$ is R_{c}, and can be further generalized, but the generalized theorems do not seem to be very useful.

[^0]: * Ramanujan, Some definite integrals, Collected Papers, Cambridge University Press, 1927, pp. 202-207.

