nacci series $0,1,1,2,3,5,8,13, \cdots$ giving the values of the Lucas function U_{n} associated with the polynomial $x^{2}-x-1$. This polynomial is irreducible modulo 13 , so that the period of the Fibonacci series modulo 13 gives the period of the mark α associated with $x^{2}-x-1$ in the finite field of order 13^{2}. We have $\omega=7$, norm $\alpha=-1, \theta=2, k=2, \sigma=2, p-1=12$. Hence (2) becomes $(2,2)|\delta|(2,12)$, so that $\delta=2$. Hence the period is 28 , which is easily verified directly. It seems quite difficult to determine the exact value of δ in all cases.*

California Institute of Technology

ON A PROBLEM OF KNASTER AND ZARANKIEWICZ \dagger

BY J. H. ROBERTS

Knaster and Zarankiewicz have proposed the following problem: \ddagger "Does every continuum A contain a subcontinuum B such that $A-B$ is connected?" Knaster has shown, § by an example in 3 -space, that the answer is in the negative. In the present paper an example is given of a plane continuum M such that every non-degenerate proper subcontinuum of M disconnects M.

The point sets considered in this paper all lie in a plane.
Definition of $F(C ; X, Y ; \epsilon)$. Let C be any simple closed curve, X and Y distinct points of C, and ϵ any positive number. There exists a finite set of points $A_{1}, A_{2}, \cdots, A_{n},(n>2)$, such that (a) $A_{1}+A_{2}+\cdots+A_{n}$ contains $X+Y$, (b) $A_{1}, A_{2}, \cdots, A_{n}$ lie on C in the order $A_{1} A_{2} \cdots A_{n} A_{1}$, and (c) A_{i} and A_{i+1} (subscripts are to be reduced modulo n) are the end points of an $\operatorname{arc} t_{i}$ of diameter $<\epsilon$ which is a subset of C not containing A_{i+2}. There exists a set of mutually exclusive arc segments $v_{1}, v_{2}, \cdots, v_{n}$ lying within C such that $v_{i}+t_{i}$ is a simple closed curve w_{i} of diameter $<\epsilon$. Let J denote the simple closed curve

[^0]$\sum_{1}^{n} A_{i}+v_{i}$. There exist n infinite sequences of simple closed curves $C_{i j},(i=1,2, \cdots, n ; j=1,2, \cdots)$, such that (1) $C_{i j}$ contains A_{i} but otherwise lies within J, (2) the sequence $C_{i 1}, C_{i 2}, C_{i 3}, \cdots$ has as sequential limit set the $\operatorname{arc} A_{i}+v_{i}+A_{i+1}$, (3) $C_{i j}$ is of diameter $<\epsilon$, (4) $C_{i j} \cdot C_{i k}=A_{i},(j \neq k)$, and $C_{i j} \cdot C_{h k}=0$, ($i \neq h$), and (5) no point of $C_{i j}$ lies within any $C_{h k}$. The set $F(C ; X, Y ; \epsilon)$ is defined as the sum of all the curves $C_{i j}$ and the n curves w_{i} :
$$
F(C ; X, Y ; \epsilon)=\sum_{i=1}^{n}\left[w_{i}+\sum_{j=1}^{\infty} C_{i j}\right] .
$$

Definition of M. Let E be any simple closed curve, X and Y any two points of E. Let K_{1} denote a set $F(E ; X, Y ; 1)$. Then $K_{1}=\sum_{i=1}^{\infty} E_{1 i}$, where for each $i, E_{1 i}$ is a simple closed curve of diameter <1, and the common part of $E_{1 i}$ and the sum of the other curves E_{11}, E_{12}, \cdots either is one point, or is two points. Thus $E_{1 i}$ contains distinct points $X_{1 i}$ and $Y_{1 i}$ such that no other point of $E_{1 i}$ belongs to $E_{1 j},(i \neq j)$. For each i let $G_{1 i}$ be a set $F\left(E_{1 i} ; X_{1 i}, Y_{1 i} ; 1 / 2\right)$ and let K_{2} be $G_{11}+G_{12}+\cdots \cdot$

Suppose K_{1}, K_{2}, $\cdots, K_{n},(n>1)$, have been defined, K_{1} being as defined above and, for each i, the following properties obtain:
I. K_{i} is the sum of a countable set of simple closed curves E_{11}, E_{12}, \cdots.
II. Each curve $E_{i h}$ has, in common with the sum of the other curves $E_{i 1}, E_{i 2}, \cdots$, either one point or two points.
III. $X_{i h}$ and $Y_{i h}$ are distinct points of $E_{i h}$ such that no other point of $E_{i h}$ belongs to the sum of the other curves $E_{i 1}, E_{i 2}, \cdots$.
IV. No point is common to the interiors of two curves $E_{i h}$ and $E_{i k},(h \neq k)$.
V. $K_{i+1},(i<n)$, is a subset of the sum of K_{i} and the interiors of all the curves $E_{i 1}, E_{i 2}, \cdots$.
VI. The subset of $K_{i+1},(i<n)$, which lies on and within $E_{i h}$ is a set $F\left(E_{i h} ; X_{i h}, Y_{i h} ; 1 /[i+1]\right)$.

For $n=2$, the sets K_{1} and K_{2} defined above have these properties. For each $i,(i \leqq n)$, let U_{i} be the set of all points of K_{i}, each of which belongs to at least two curves of the set $E_{i 1}, E_{i 2}, \cdots$, and let D_{i} denote K_{i} plus the interiors of all the curves $E_{i 1}$, $E_{i 2}, \cdots$.

For each k let $G_{n k}$ be a set $F\left(E_{n k} ; X_{n k}, Y_{n k} ; 1 /[n+1]\right)$, and let K_{n+1} be $G_{n 1}+G_{n 2}+\cdots$. Then it readily follows that the sequence $K_{1}, K_{2}, \cdots, K_{n}, K_{n+1}$ has the properties I-VI above. Hence there is an infinite sequence K_{1}, K_{2}, \cdots with properties I-VI, K_{1} being a set $F(E ; X, Y ; 1)$. Let M be $K_{1}+K_{2}+\cdots$ plus all limit points. This is the same as the common part of D_{1}, D_{2}, \cdots.

Proof that $M-H$ is not connected. Suppose H is a nondegenerate proper subcontinuum of M. Suppose $M-H$ is connected. Now the components of $M-U_{n}$ are of diameter $<1 / n$. Hence there exists an n such that H contains a point P of U_{n}. It will be shown that if H contains a point of U_{n}, then it contains all of U_{n}. In view of this, and the fact that U_{n} is a subset of U_{n+1} and that $M=\left(U_{1}+U_{2}+\cdots\right)$ plus limit points, it follows that $H=M$, which is a contradiction.

It remains to show that if H contains a point P of U_{n}, then it contains all of U_{n}. Let h be such that P belongs to $E_{n h}$. The subset of K_{n+1} which lies on and within $E_{n h}$ is a set $F\left(E_{n h} ; X_{n h}\right.$, $\left.Y_{n h} ; 1 /[n+1]\right)$. The points of U_{n+1} in this set can be labeled $B_{1}, B_{2}, \cdots, B_{k}$, so that they lie on $E_{n h}$ in the order $B_{1} B_{2} \cdots B_{k} B_{1}$. Now each of the infinity of components of $K_{n+1}-B_{i}$ is a subset of a different component of $M-B_{i}$. Hence if H contains B_{i}, and $M-H$ is connected, H must contain all save one of these components. But B_{i+1} is a limit point of the sum of the components of $K_{n+1}-B_{i}$. Hence, if H contains B_{i}, it contains B_{i+1}. But for some $i, P=B_{i}$. Thus H contains all the points of U_{n+1} on $E_{n h}$, and therefore the one or two points of U_{n} on $E_{n h}$. Now any two curves $E_{n h}$ and $E_{n k}$, of the set $E_{n 1}, E_{n 2}, \cdots$, can be joined by a finite chain $L_{1}, L_{2}, \cdots, L_{e}$ of curves of the set $E_{n 1}, E_{n 2}, \cdots, L_{1}$ having a point in common with $E_{n h}, L_{i}$ having a point in common with $L_{i+1},(i<e)$, and L_{e} having a point in common with $E_{n k}$. Since these common points are in U_{n}, and H contains a point of U_{n} in $E_{n h}$, it readily follows, by repeated application of the above argument, that H contains every point of U_{n} in $E_{n h}+L_{1}+L_{2}+\cdots+L_{e}+E_{n k}$, and therefore H contains every point of U_{n}.

[^0]: * See the discussion at the close of my paper, Transactions of this Society, vol. 33 (1931), p. 165.
 \dagger Presented to the Society, December 1, 1933.
 \ddagger Fundamenta Mathematicae, vol. 8 (1926), Problem 42, p. 376.
 § B. Knaster, Sur un continu que tout sous-continu divise, Proceedings of the Polish Mathematical Congress, 1929, p. 59.

