nacci series 0, 1, 1, 2, 3, 5, 8, 13, \cdots giving the values of the Lucas function U_n associated with the polynomial x^2-x-1 . This polynomial is irreducible modulo 13, so that the period of the Fibonacci series modulo 13 gives the period of the mark α associated with x^2-x-1 in the finite field of order 13. We have $\omega=7$, norm $\alpha=-1$, $\theta=2$, k=2, $\sigma=2$, p-1=12. Hence (2) becomes (2, 2) $|\delta|$ (2, 12), so that $\delta=2$. Hence the period is 28, which is easily verified directly. It seems quite difficult to determine the exact value of δ in all cases.*

CALIFORNIA INSTITUTE OF TECHNOLOGY

ON A PROBLEM OF KNASTER AND ZARANKIEWICZ†

BY I. H. ROBERTS

Knaster and Zarankiewicz have proposed the following problem:‡ "Does every continuum A contain a subcontinuum B such that A-B is connected?" Knaster has shown,§ by an example in 3-space, that the answer is in the negative. In the present paper an example is given of a *plane* continuum M such that every non-degenerate proper subcontinuum of M disconnects M.

The point sets considered in this paper all lie in a plane.

DEFINITION OF $F(C; X, Y; \epsilon)$. Let C be any simple closed curve, X and Y distinct points of C, and ϵ any positive number. There exists a finite set of points $A_1, A_2, \dots, A_n, (n > 2)$, such that (a) $A_1 + A_2 + \dots + A_n$ contains X + Y, (b) A_1, A_2, \dots, A_n lie on C in the order $A_1A_2 \dots A_nA_1$, and (c) A_i and A_{i+1} (subscripts are to be reduced modulo n) are the end points of an arc t_i of diameter $<\epsilon$ which is a subset of C not containing A_{i+2} . There exists a set of mutually exclusive arc segments v_1, v_2, \dots, v_n lying within C such that $v_i + t_i$ is a simple closed curve w_i of diameter $<\epsilon$. Let J denote the simple closed curve

^{*} See the discussion at the close of my paper, Transactions of this Society, vol. 33 (1931), p. 165.

[†] Presented to the Society, December 1, 1933.

[‡] Fundamenta Mathematicae, vol. 8 (1926), Problem 42, p. 376.

[§] B. Knaster, Sur un continu que tout sous-continu divise, Proceedings of the Polish Mathematical Congress, 1929, p. 59.

 $\sum_{1}^{n} A_{i} + v_{i}$. There exist n infinite sequences of simple closed curves C_{ij} , $(i=1, 2, \cdots, n; j=1, 2, \cdots)$, such that (1) C_{ij} contains A_{i} but otherwise lies within J, (2) the sequence C_{i1} , C_{i2} , C_{i3} , \cdots has as sequential limit set the arc $A_{i} + v_{i} + A_{i+1}$, (3) C_{ij} is of diameter $<\epsilon$, (4) $C_{ij} \cdot C_{ik} = A_{i}$, $(j \neq k)$, and $C_{ij} \cdot C_{hk} = 0$, $(i \neq h)$, and (5) no point of C_{ij} lies within any C_{hk} . The set $F(C; X, Y; \epsilon)$ is defined as the sum of all the curves C_{ij} and the n curves w_{i} :

$$F(C; X, Y; \epsilon) = \sum_{i=1}^{n} \left[w_i + \sum_{j=1}^{\infty} C_{ij} \right].$$

DEFINITION OF M. Let E be any simple closed curve, X and Y any two points of E. Let K_1 denote a set F(E; X, Y; 1). Then $K_1 = \sum_{i=1}^{\infty} E_{1i}$, where for each i, E_{1i} is a simple closed curve of diameter <1, and the common part of E_{1i} and the sum of the other curves E_{11} , E_{12} , \cdots either is one point, or is two points. Thus E_{1i} contains distinct points X_{1i} and Y_{1i} such that no other point of E_{1i} belongs to E_{1j} , $(i \neq j)$. For each i let G_{1i} be a set $F(E_{1i}; X_{1i}, Y_{1i}; 1/2)$ and let K_2 be $G_{11} + G_{12} + \cdots$.

Suppose $K_1, K_2, \dots, K_n, (n > 1)$, have been defined, K_1 being as defined above and, for each i, the following properties obtain:

- I. K_i is the sum of a countable set of simple closed curves E_{11}, E_{12}, \cdots .
- II. Each curve E_{ih} has, in common with the sum of the other curves E_{i1} , E_{i2} , \cdots , either one point or two points.
- III. X_{ih} and Y_{ih} are distinct points of E_{ih} such that no other point of E_{ih} belongs to the sum of the other curves E_{i1}, E_{i2}, \cdots .
- IV. No point is common to the interiors of two curves E_{ih} and E_{ik} , $(h \neq k)$.
- V. K_{i+1} , (i < n), is a subset of the sum of K_i and the interiors of all the curves E_{i1} , E_{i2} , \cdots .
- VI. The subset of K_{i+1} , (i < n), which lies on and within E_{ih} is a set $F(E_{ih}; X_{ih}, Y_{ih}; 1/[i+1])$.

For n=2, the sets K_1 and K_2 defined above have these properties. For each $i, (i \leq n)$, let U_i be the set of all points of K_i , each of which belongs to at least two curves of the set E_{i1}, E_{i2}, \cdots , and let D_i denote K_i plus the interiors of all the curves E_{i1}, E_{i2}, \cdots .

For each k let G_{nk} be a set $F(E_{nk}; X_{nk}, Y_{nk}; 1/[n+1])$, and let K_{n+1} be $G_{n1}+G_{n2}+\cdots$. Then it readily follows that the sequence $K_1, K_2, \cdots, K_n, K_{n+1}$ has the properties I-VI above. Hence there is an infinite sequence K_1, K_2, \cdots with properties I-VI, K_1 being a set F(E; X, Y; 1). Let M be $K_1+K_2+\cdots$ plus all limit points. This is the same as the common part of D_1, D_2, \cdots .

PROOF THAT M-H IS NOT CONNECTED. Suppose H is a non-degenerate proper subcontinuum of M. Suppose M-H is connected. Now the components of $M-U_n$ are of diameter <1/n. Hence there exists an n such that H contains a point P of U_n . It will be shown that if H contains a point of U_n , then it contains all of U_n . In view of this, and the fact that U_n is a subset of U_{n+1} and that $M=(U_1+U_2+\cdots)$ plus limit points, it follows that H=M, which is a contradiction.

It remains to show that if H contains a point P of U_n , then it contains all of U_n . Let h be such that P belongs to E_{nh} . The subset of K_{n+1} which lies on and within E_{nh} is a set $F(E_{nh}; X_{nh},$ Y_{nh} ; 1/[n+1]). The points of U_{n+1} in this set can be labeled B_1, B_2, \dots, B_k , so that they lie on E_{nh} in the order $B_1B_2 \cdot \cdot \cdot B_kB_1$. Now each of the infinity of components of $K_{n+1}-B_i$ is a subset of a different component of $M-B_i$. Hence if H contains B_i , and M-H is connected, H must contain all save one of these components. But B_{i+1} is a limit point of the sum of the components of $K_{n+1}-B_i$. Hence, if H contains B_i , it contains B_{i+1} . But for some i, $P = B_i$. Thus H contains all the points of U_{n+1} on E_{nh} , and therefore the one or two points of U_n on E_{nh} . Now any two curves E_{nh} and E_{nh} , of the set E_{n1} , E_{n2} , \cdots , can be joined by a finite chain L_1 , L_2 , \cdots , L_e of curves of the set E_{n1} , E_{n2} , \cdots , L_1 having a point in common with E_{nh} , L_i having a point in common with L_{i+1} , (i < e), and L_e having a point in common with E_{nk} . Since these common points are in U_n , and H contains a point of U_n in E_{nh} , it readily follows, by repeated application of the above argument, that H contains every point of U_n in $E_{nh}+L_1+L_2+\cdots+L_e+E_{nk}$, and therefore H contains every point of U_n .

DUKE UNIVERSITY