ENUMERATIVE PROPERTIES OF r-SPACE CURVES*

BY B. C. WONG

In the determination of enumerative properties of algebraic curves it is of ten convenient to decompose a given curve C^{n} of order n and genus p to be studied into a number of component curves the sum of whose orders is equal to n. We may decompose C^{n} in various ways but we find it most convenient to decompose it completely into n lines with $n-1+p$ incidences. We call the system formed by these n lines an n-line or a skew n-sided polygon Γ with $n-1+p$ vertices. To determine the enumerative properties of the given curve C^{n}, we, in this paper, determine certain enumerative properties of Γ and then interpret the results for C^{n}. We shall obtain in this manner a number of results for C^{n} some of which are already well known and the others are less well known or are new.

Let the symbol $\{n\}_{x_{1}}{ }^{(s)}{ }_{x_{2}} \ldots x_{q}$ denote the number of groups each consisting of $x_{1}+x_{2}+\cdots+x_{q}$ sides which are arranged in q sets such that each set contains x_{i} consecutive sides and that any two sets are separated by at least s consecutive sides not contained in them. Thus, $\{n\}_{11}^{(1)}$ means the number of pairs of non-consecutive sides of Γ. If $q=1$, we have $\{n\}_{x_{1}}^{(s)}$ or just $\{n\}_{x_{1}}$ which is the number of groups each of x_{1} consecutive sides. The symbol $\{n\}^{(s)}$ or $\{n\}$ means the number of groups each containing no members and is therefore equal to unity. Hence,

$$
\begin{equation*}
\{n\}^{(s)}=\{n\}=1 \tag{1}
\end{equation*}
$$

The following formula can be easily verified or can be proved by the method used below:

$$
\begin{equation*}
\{n\}_{x_{1}}^{(s)}=\{n\}_{x_{1}}=n-\left(x_{1}-1\right)+\left(x_{1}-1\right) p \tag{2}
\end{equation*}
$$

The number of groups each consisting of q pairs of intersecting sides (or the number of groups of q non-consecutive vertices) of Γ is known \dagger and is given by

[^0]\[

$$
\begin{equation*}
\{n\}_{2_{1} 2_{2} \cdots 2 q}^{(0)}=\sum_{i=0}^{q}\binom{n-q-i}{q-i}\binom{p}{i} . \tag{3}
\end{equation*}
$$

\]

The formula for the number of groups of q non-consecutive sides of Γ is, as we shall see,

$$
\begin{equation*}
\{n\}_{1_{1} 1_{2} \cdots 1_{q}}^{(1)}=\sum_{i=0}^{t}(-1)^{i}\binom{n+1-q-2 i}{q-2 i}\binom{p}{i} \tag{4}
\end{equation*}
$$

where $t=q / 2$ for q even and $t=(q-1) / 2$ for q odd.
Now we proceed to the determination of $\{n\}_{x_{1} x_{2} \ldots x_{q}}^{(s)}$. We may assume

$$
\{n\}_{x_{1} x_{2} \cdots x_{q}}^{(s)}=M+N-N^{\prime}
$$

where M is the required number when $p=0$ and N and N^{\prime} are functions of n and p, each containing p as a factor.

To find the value of M, let Γ be an open polygon, that is, a system of n lines $l_{1}, l_{2}, \cdots, l_{n}$ such that l_{1} meets l_{2}, l_{2} meets l_{3}, \cdots, l_{n-1} meets l_{n} but l_{n} is skew to l_{1}. This polygon has $n-1$ vertices, the minimum number it can have without becoming composite. By the simple process of counting, we find

$$
M=q!\binom{n-\Sigma x_{i}-q s+q+s}{q}
$$

This is verified for $n=\Sigma x_{i}+q s-s$, which gives $M=q!$.
To determine N, we notice that p is the number of additional vertices Γ may possess over and above the minimum, $n-1$. Let a general Γ with $n-1+p$ vertices be given. Consider two series of consecutive sides a_{1}, a_{2}, \cdots, and b_{1}, b_{2}, \cdots, respectively. If all the a 's are skew to all the b 's, then $a_{1}, a_{2}, \cdots, a_{x_{i}}$ and $b_{1}, b_{2}, \cdots, b_{x_{j}}$ form two distinct sets and so do b_{1}, b_{2}, \cdots, $b_{x_{i}}$ and $a_{1}, a_{2}, \cdots, a_{x_{j}}$. Now let a_{1} and b_{1} meet. The point of meeting is then one of the p additional vertices of Γ over and above the minimum. For each additional vertex we have $x_{i}-1$ additional sets given by $a_{\lambda}, a_{\lambda-1}, \cdots, a_{1}, b_{1}, b_{2}, \cdots, b_{x_{i}-\lambda}$, ($\lambda=1,2, \cdots, x_{i}-1$). Since each of these sets is to be combined with $q-1$ other sets chosen from the $\left(n-x_{i}-2 s\right)$-sided polygon
Γ^{\prime} obtained from Γ with the $x_{i}+2 s$ consecutive sides $a_{\lambda+8}$, $a_{\lambda+\varepsilon-1}, \cdots, a_{1}, b_{1}, b_{2}, \cdots, b_{x_{i}-\lambda+s}$ removed, we have

$$
N=\binom{p}{1} \sum_{i=0}^{q}\left(x_{i}-1\right)\left\{n-x_{i}-2 s\right\}_{x_{1} x_{2} \cdots x_{q} / x_{i}}^{(8)}
$$

Now it is necessary to deduct a certain number N^{\prime} of groups arising from the supposition that a_{1} and b_{1} are incident. Every group containing a pair of sets $a_{\alpha+1}, a_{\alpha+2}, \cdots, a_{\alpha+x_{i}} ; b_{\beta+1}$, $b_{\beta+2}, \cdots, b_{\beta+x_{j}}$, where $0 \leqq \alpha+\beta \leqq s-1$, is to be deducted, as these two sets are separated by only $\alpha+\beta$ sides, namely, a_{α}, $a_{\alpha-1}, \cdots, a_{1}, b_{1}, b_{2}, \cdots, b_{\beta}$. These two sets are to be combined with $q-2$ other sets chosen from the $\left(n-x_{i}-x_{j}-2 s-\alpha-\beta\right)$ sided polygon obtained from Γ with the $\alpha+\beta+x_{i}+x_{j}+2 s$ sides $a_{1}, a_{2}, \cdots, a_{\alpha}, \cdots, a_{\alpha+x_{i}}, a_{\alpha+x_{i}+1}, \cdots, a_{\alpha+x_{i}+s}, b_{1}$, $b_{2}, \cdots, b_{\beta}, \cdots, b_{\beta+x_{j}}, \cdots, b_{\beta+x_{i}+s}$ removed. Hence, the number of groups containing these two particular sets is, for all different values of i and j from 1 to q,

$$
\sum_{i \neq j}^{q}\left\{n-x_{i}-x_{j}-2 s-\alpha-\beta\right\}_{x_{1} x_{2} \cdots x_{q} / x_{i} x_{j}}^{(s)}
$$

By interchanging the a 's and the b 's we have twice this number; and by allowing α and β to take on all the permissible values, we have, remembering the factor p,

$$
N^{\prime}=2\binom{p}{1} \sum_{k=1}^{s} k \sum_{i \neq j}^{q}\left\{n-x_{i}-x_{j}-2 s+1-k\right\}_{x_{1} x_{2} \cdots x_{q} / x_{i} x_{j}}^{(s)}
$$

Then, the result for Γ which we started out to derive is the recursion formula
(A) $\{n\}_{x_{1} x_{2} \cdots x_{q}}^{(s)}=q!\binom{n-\Sigma x_{i}-q s+q+s}{q}$

$$
\begin{aligned}
& +\binom{p}{1} \sum_{i=1}^{q}\left(x_{i}-1\right)\left\{n-x_{i}-2 s\right\}_{x_{1} x_{2} \cdots x_{q} / x_{i}}^{(s)} \\
& -2\binom{p}{1} \sum_{k=1}^{s} k \sum_{i \neq j}^{q}\left\{n-x_{i}-x_{j}\right. \\
& -2 s+1-k\}_{x_{1} x_{2} \cdots x_{q} / x_{i} x_{j}}^{(s)} .
\end{aligned}
$$

In the derivation of this formula we have tacitly assumed that all the x 's are different. If t of the x 's are alike, the righthand member is to be divided by t !. The following result, obtained in somewhat the same manner as above, is more general:
(B) $\{n\}_{x_{1}{ }_{1}{ }_{1}{ }_{2}{ }_{2}{ }^{t_{2} \ldots x v}{ }^{t \nu}}$

$$
\left.\begin{array}{c}
=\frac{\left(t_{1}+t_{2}+\cdots+t_{\nu}\right)!}{t_{1}!t_{2}!\cdots t_{\nu}!}\left(n-\sum t_{i} x_{i}-s \sum_{i} t_{i}+\sum t_{i}+s\right. \\
+\binom{p}{1} \sum_{i=1}^{\nu}\left(x_{i}-1\right)\left\{n-x_{i}-2 s\right\}_{x_{1}{ }_{1}{ }^{(s)}{ }_{1} x_{2} t_{2} \ldots x_{\nu} t_{\nu} / x_{i}}
\end{array}\right)
$$

This gives the number of all the groups each consisting of $x_{1}{ }^{t_{1}}+x_{2}{ }^{t_{2}}+\cdots+x_{\nu}{ }^{t_{v}}$ sides arranged in $t_{1}+t_{2}+\cdots+t_{\nu}$ sets such that t_{1} of these sets contain each x_{1} consecutive sides, t_{2} contain each x_{2} consecutive sides, etc., and such that all the sets are separated from one another by at least s sides.

In the expansion of these formulas, replace $\binom{p}{\lambda}\binom{p}{\mu}$ wherever it appears by $\left(\lambda_{+\mu}^{\phi}\right)$. The necessity of this replacement is due to the nature of the combinatory ideas involved or can be easily shown by calculation of known cases.

Putting $s=0, \nu=1, x_{1}=2$ in (B) or putting $s=0, x_{1}=x_{2}$ $=\cdots=x_{q}=2$ in (A) and dividing by $q!$, we have formula (3). For $s=1, x_{1}=x_{2}=\cdots=x_{q}=1$, (A) gives q ! times (4), and for $s=1, \nu=1, x_{1}=1$, (B) gives exactly the result (4).

Now we are going to derive a few results for curves. Consider a general curve C^{n} in S_{3}. Since two skew lines have one apparent intersection or apparent double point, the number of apparent double points of C^{n} is equal to the number of pairs of nonintersecting sides of Γ and is therefore given by

$$
\{n\}_{11}^{(1)}=\binom{n-1}{2}-p .
$$

The plane of a conic taken twice may be regarded as its developable. Hence, the order of the developable surface of C^{n} is twice the number of pairs of consecutive sides of Γ and is, therefore,

$$
2\{n\}_{2}=2(n-1+p)
$$

Similarly, the developable V_{m} of C^{n} in S_{r} is of order

$$
m\{n\}_{m}=m[n-(m-1)+(m-1) p]
$$

Also, the number of hyperosculating hyperplanes of C^{n} passing through a given point of S_{r} is

$$
r\{n\}_{r}=r[n-(r-1)+(r-1) p]
$$

and the number of hyperstationary tangent S_{r-1} 's is

$$
(r+1)\{n\}_{r+1}=(r+1)(n-r+r p)
$$

The number of quadrisecant lines of a C^{n} in S_{3} is obtained from the following consideration. Any four general skew lines have two transversals. If they intersect in pairs or if two of them intersect only, there is only one transversal. Hence, the required number is

$$
2\{n\}_{1111}^{(1)}+\{n\}_{112}^{(1)}+\{n\}_{22}^{(1)}
$$

It is not difficult to see that the same number is also given by

$$
2\binom{n}{4}-\binom{n-2}{2}\{n\}_{2}+\{n\}_{22}^{(1)}
$$

Either case yields the same required expression

$$
\frac{1}{12}(n-2)(n-3)^{2}(n-4)-\frac{1}{2}(n-3)(n-4) p+\frac{1}{2} p(p-1)
$$

In the same manner, the order of the surface of trisecant lines is found to be

$$
2\{n\}_{111}^{(1)}+\{n\}_{12}^{(1)}=\frac{1}{3}(n-1)(n-2)(n-3)-(n-2) p .
$$

Since three conics in S_{3} not all lying in the same plane have 8 common tangent planes, we say that the number of tritangent
planes of C^{n} in S_{3} is 8 times the number of planes each containing three non-consecutive vertices of Γ and is therefore

$$
\begin{aligned}
8\{n\}_{222}^{(0)}= & 8\left[\binom{n-3}{3}+\binom{n-4}{2}\binom{p}{1}\right. \\
& \left.+\binom{n-5}{1}\binom{p}{2}+\binom{p}{3}\right]
\end{aligned}
$$

Similarly, the number of hyperplanes tangent to a C^{n} in S_{r} at r distinct points is given by

$$
2^{r}\{n\}_{2^{r}}^{(0)}=2^{r} \sum_{i=0}^{r}\binom{n-r-i}{r-i}\binom{p}{i}
$$

As we have already given examples sufficiently numerous to illustrate the method used, we shall record just one or two more results without explanation, the symbols themselves being indicative of the meaning.

The number of ($r+1$)-secant ($r-1$)-spaces of a C^{n} in a $2 r$-space $S_{2 r}$ is

$$
\{n\}_{1^{r+1}}^{(1)}=\sum_{i=0}^{t}(-1)^{i}\binom{n-r-2 i}{r+1-2 i}\binom{p}{i},
$$

where $t=(r+1) / 2$ if r is odd and $t=r / 2$ if r is even.
As another result we have the order of the V_{3} formed by the ∞^{1} quinti-secant planes of a C^{n} in S_{4} given by

$$
5\binom{n}{5}-2\binom{n-2}{3}\{n\}_{2}^{(0)}+\binom{n-4}{1}\{n\}_{22}^{(0)}
$$

or

$$
5\{n\}_{11111}^{(1)}+3\{n\}_{2111}^{(1)}+2\{n\}_{221}^{(1)}+\{n\}_{23}^{(1)}+\{n\}_{311}^{(1)} .
$$

The calculation of either yields

$$
(n-4)\binom{n-2}{4}-2\binom{n-3}{3} p+(n-4)\binom{p}{2}
$$

The University of California

[^0]: * Presented to the Society, November 28, 1931.
 \dagger This result is given without proof by B. C. Wong, On loci of $(r-2)$-spaces incident with curves in r-space, this Bulletin, vol. 36 (1930), pp. 755-761.

