and curvature types of triply infinite families of curves. The reresults are summarized in the following table; the two types compared are named in the left-hand column; their intersection is identified in the center; and the number, that is, the infinitude, of (projectively different) common families is given at the right.
$\begin{array}{lcc}\text { Dynamical Sectional: } & \begin{array}{c}\text { Special central fields or } \\ \text { General cones }\end{array} & \infty^{f(1)} \\ \text { Dynamical Curvature: } & \text { Any central field } \\ \text { Sectional Curvature: } & \begin{array}{c}\text { General cones and } \\ \text { Quadric surfaces }\end{array} & \infty^{f(2)} \\ & \infty^{f(1)+2}\end{array}$
The 2 in the exponent of ∞ refers of course to two arbitrary constants, while (according to a notation which I proposed in this Bulletin in 1912, in a review of Riquier's treatise on partial differential equations) $f(1)$ means an arbitrary function of one independent variable, and $f(2)$ an arbitrary function of two independent variables.

Columbia University

ON NEVANLINNA'S WEAK SUMMATION METHOD \dagger

BY A. F. MOURSUND

1. Introduction. Our principal object in this note is to discuss the function

$$
\begin{array}{r}
\left.\rho_{n}(\beta)=\frac{2}{\pi} \int_{0}^{\pi / 2} \right\rvert\, \int_{0}^{1} \beta(\log C)^{\beta}(1-t)^{-1}(\log C /(1-t))^{-\beta-1} \\
 \tag{1}\\
\left.\times \frac{\sin (2 n t+1) s}{\sin s} d t \right\rvert\, d s
\end{array}
$$

which, for $\beta>0$ and the "dummy" constant $C \geqq e^{\beta+1}$, plays a role in the theory of summation of Fourier series by Nevanlinna’s weak method \ddagger analogous to the role the Lebesgue constants

[^0]\[

$$
\begin{equation*}
\rho_{n}=\frac{2}{\pi} \int_{0}^{\pi / 2}\left|\frac{\sin (2 n+1) s}{\sin s}\right| d s, \quad(n=0,1, \cdots) \tag{2}
\end{equation*}
$$

\]

play in the theory of convergence of such series. \dagger Nevanlinna's weak method is essentially the same as the Bosanquet-Linfoot method of zero order. \ddagger

Our principal results concerning the function $\rho_{n}(\beta)$ are given by the following theorems.

Theorem 1. For each $n \geqq 0$, the function $\rho_{n}(\beta) \rightarrow \rho_{n}$ as $\beta \rightarrow 0$.
Theorem 2. When $\beta>1$, the function $\rho_{n}(\beta)$ is uniformly bounded with respect to n for all $n \geqq 0$.

Theorem 3. For $0<\beta<1$,

$$
\rho_{n}(\beta)=\frac{4}{\pi^{2}} \frac{(\operatorname{llog} C)^{\beta}}{1-\beta}(\log n)^{1-\beta}+O(1),
$$

and

$$
\rho_{n}(1)=\frac{4}{\pi^{2}} \log C \log \log n+O(1) .
$$

2. Nevanlinna's Weak Summation Method. Applied to the Fourier series generated by a Lebesgue integrable function $f(x)$, Nevanlinna's weak method consists in forming from the well known expression for the sum of n terms of the series the N_{β} transform

$$
\begin{equation*}
N_{\beta} S_{n}(x)=\frac{1}{2 \pi} \int_{0}^{1} N_{\beta}(t) d t \int_{-\pi}^{\pi} f(s) \frac{\sin (2 n t+1)(x-s) / 2}{\sin (x-s) / 2} d s \tag{3}
\end{equation*}
$$

where

[^1]$$
N_{\beta}(t)=\beta(\log C)^{\beta}(1-t)^{-1}(\log C /(1-t))^{-\beta-1}
$$
with $\beta>0$ and $C \geqq e^{\beta+1}$, and in taking the limit
\[

$$
\begin{equation*}
\lim _{n \rightarrow \infty} N_{\beta} S_{n}(x) \tag{4}
\end{equation*}
$$

\]

Bosanquet and Linfoot have given an example, which will serve equally well for Nevanlinna's weak method, of a continuous function $f(x)$ whose Fourier series diverges at $x=0$ when summed by their zero order method with $0<\beta \leqq 1 . \dagger$ For $\beta>1$, Nevanlinna's method, and consequently the Bosanquet-Linfoot zero order method, is Lebesgue effective. \ddagger
3. The Function $\rho_{n}(\beta)$. Upon changing the order of integration in (3), we see that, for the values of β for which the function

$$
\begin{equation*}
\rho_{n}(\beta, x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|\int_{0}^{1} N_{\beta}(t) \frac{\sin (2 n t+1)(x-s) / 2}{\sin (x-s) / 2} d t\right| d s \tag{5}
\end{equation*}
$$

becomes infinite with n, functions continuous on $(-\pi, \pi)$ can be constructed for which (i) the limit (4) does not exist at the point x, (ii) the limit (4) exists at x but does not exist uniformly in any neighborhood of that point. § Setting $x=0$ in (5) we obtain, after slight simplification, the function $\rho_{n}(\beta)$ defined in the introduction.
4. Lemmas. In the statements and proofs of our lemmas and theorems, $\beta>0, C \geqq e^{\beta+1}$, and $n \geqq 0$ unless otherwise stated. Proofs which the reader can readily supply are merely indicated or omitted entirely.

Lemma 1. For $2 n s \geqq \pi$

$$
\left.\begin{array}{rl}
\mid \int_{0}^{1} N_{\beta}(t) & \sin \\
\cos
\end{array}\right\} 2 n s t d t\left|\left\lvert\, \begin{array}{l}
1-\pi /(2 n s) \\
\\
\end{array}\right.\right.
$$

[^2]Lemma 2. $\rho_{n}(\beta)=\rho_{n}{ }^{*}(\beta)+O(1)$, where

$$
\begin{equation*}
\rho_{n}^{*}(\beta)=\frac{2}{\pi} \int_{0}^{1 / 2} \frac{1}{s}\left|\int_{0}^{1} N_{\beta}(t) \sin 2 n s t d t\right| d s \tag{6}
\end{equation*}
$$

and the $O(1)$ terms are uniformly bounded with respect to β, C, and $n . \dagger$

Lemma 3. For $v>0$,

$$
\int_{0}^{\infty}\left(\frac{\log C}{v}+1+t\right)^{-\beta-1} \cos e^{-t v} d t=\frac{1}{\beta}+O\left(\frac{1}{v}\right)
$$

Proof. We write

$$
\begin{aligned}
\frac{1}{\beta}-\int_{0}^{\infty}= & \int_{0}^{\infty}\left[(1+t)^{-\beta-1}-\left(\frac{\log C}{v}+1+t\right)^{-\beta-1} \cos e^{-t v} d t\right] \\
\leqq & \int_{0}^{\infty}\left\{\left[(1+t)^{-\beta-1}-\left(\frac{\log C}{v}+1+t\right)^{-\beta-1}\right]\right. \\
& \left.+\left(\frac{\log C}{v}+1+t\right)^{-\beta-1} e^{-2 t v} / 2\right\} d t \\
\leqq & (\beta+1) \int_{0}^{\infty} d t \int_{0}^{\log C / v}(1+t+u)^{-\beta-2} d u+\int_{0}^{\infty} e^{-2 t v} / 2 d t \\
\leqq & (\beta+1) \frac{\log C}{v} \int_{0}^{\infty}(1+t)^{-\beta-2} d t+\frac{1}{4 v}=\frac{\log C}{v}+\frac{1}{4 v}
\end{aligned}
$$

Lemma 4. For r sufficiently large,
$\int_{0}^{1} N_{\beta}(1-t) \cos r t d t=\beta(\log C)^{\beta}\left\{(\log r)^{-\beta} / \beta+O(\log r)^{-\beta-1}\right\}>0$,
$\int_{0}^{1} N_{\beta}(1-t) \sin r t d t=O\left[(\log r)^{-\beta-1}\right]$.
Proof. The lemma, except for the term $O\left[(\log r)^{-\beta-1}\right]$ in the first part, follows immediately from a theorem concerning Fourier coefficients due to U. S. Haslam-Jones. \ddagger Upon inspection of

[^3]the proof given by Haslam-Jones, the reader will see how, with the aid of Lemma 3, our result can be obtained.

Lemma 5.

$$
|\sin r|=\frac{2}{\pi}-\frac{4}{\pi} \sum_{m=1}^{\infty} \frac{\cos 2 m r}{4 m^{2}-1} \dagger
$$

Lemma 6. For $M \geqq e$ and $n \geqq M$,

$$
\sum_{m=1}^{\infty} \frac{1}{4 m^{2}-1} \int_{M}^{n} \frac{1}{r}(\log r)^{-\beta} \cos 2 m r d r \leqq \frac{1}{2 M}
$$

Proof. It can be shown by means of the second mean value theorem that each of the integrals $\leqq 1 / M$. The lemma follows, because

$$
\sum \frac{1}{4 m^{2}-1}=\frac{1}{2}
$$

5. Proof of Theorems. In this paragraph we prove our theorems.

Proof of Theorem 1. Integrating by parts, we have

$$
\begin{aligned}
\rho_{n}(\beta)=\frac{2}{\pi} \int_{0}^{\pi / 2} \left\lvert\, 1+(\log C)^{\beta} \frac{2 n s}{\sin s} \int_{0}^{1}\right. & (\log C /(1-t))^{-\beta} \\
& \times \cos (2 n t+1) s d t \mid d s
\end{aligned}
$$

and the theorem follows by elementary theorems concerning limits.

Proof of Theorem 2. When $n \leqq \pi$, we have at once $\rho_{n}{ }^{*}(\beta) \leqq 2$; and when $n>\pi$, we have for $\beta>1$, using Lemma 1,

$$
\rho_{n}^{*}(\beta) \leqq O(1)+\frac{2}{\pi}(\log C)^{\beta} \int_{\pi /(2 n)}^{1 / 2} \frac{1}{s}(\log 2 C n s / \pi)^{-\beta} d s=O(1) .
$$

The theorem follows by Lemma 2.
Proof of Theorem 3. By Lemma 2,

$$
\rho_{n}(\beta)=\rho_{n}^{*}(\beta)+O(1)
$$

[^4]Using Lemmas 4, 5, and 6, we have, for a fixed sufficiently large M and $n>M$,

$$
\begin{aligned}
\rho_{n}^{*}(\beta)= & \frac{2}{\pi}\left[\int_{0}^{M /(2 n)}+\int_{M /(2 n)}^{1 / 2}\right] \frac{1}{s}\left|\int_{0}^{1} N_{\beta}(t) \sin 2 n s t d t\right| d s \\
= & O(1)+\frac{2}{\pi} \int_{M}^{n} \frac{1}{r}\left|\int_{0}^{1} N_{\beta}(t) \sin r t d t\right| d r \\
= & \left.\frac{2}{\pi} \int_{M}^{n} \frac{1}{r} \right\rvert\, \sin r \int_{0}^{1} N_{\beta}(1-t) \cos r t d t \\
& -\cos r \int_{0}^{1} N_{\beta}(1-t) \sin r t d t \mid d r+O(1) \\
= & \frac{2}{\pi} \int_{M}^{n} \frac{|\sin r|}{r} d r \int_{0}^{1} N_{\beta}(1-t) \cos r t d t+O(1) \\
= & \frac{2 \beta(\log C)^{\beta}}{\pi}\left\{\frac{2}{\pi} \int_{M}^{n} \frac{1}{r} \cdot \frac{(\log r)^{-\beta}}{\beta} d r\right. \\
& -\frac{4}{\pi} \sum_{m=1}^{\infty} \frac{1}{4 m^{2}-1} \int_{M}^{n} \frac{(\log r)^{-\beta}}{\beta} \cos 2 m r d r \\
& \left.+\int_{M}^{n} \frac{|\sin r|}{r} O\left[(\log r)^{-\beta-1}\right] d r\right\}+O(1) \\
= & \frac{4}{\pi^{2}}(\log C)^{\beta} \int_{M}^{n} \frac{1}{r} \cdot(\log r)^{-\beta} d r+O(1) .
\end{aligned}
$$

The lemma follows when we carry out the integration.
The University of Oregon

[^0]: \dagger Presented to the Society, June 20, 1934.
 \ddagger F. Nevanlinna, Über die Summation der Fourier'schen Reihen und Integrale, Översikt av Finska Vetenskaps-Societetens Förhandlingar, vol. 64 (1921-22), A, No. 3, 14 pp. A. F. Moursund, On the Nevanlinna and BosanquetLinfoot summation methods, Annals of Mathematics, (2), to appear.

[^1]: \dagger L. Fejér, Lebesguesche Konstanten und Divergente Fourierreihen, Journal für Mathematik, vol. 138 (1910), pp. 22-53. Fejér shows in that paper that $\rho_{n} \sim\left(4 / \pi^{2}\right) \log n+O(1)$. T. H. Gronwall, Über des Lebesgueschen Konstanten bei den Fourierschen Reihen, Mathematische Annalen, vol. 72 (1912), pp. 244-261. G. Szegö, Über die Lebesgueschen Konstanten bei den Fourierschen Reihen, Mathematische Zeitschrift, vol. 9 (1921), pp. 163-166.
 \ddagger L. S. Bosanquet and E. H. Linfoot, On the zero order summability of Fourrer series, Journal of the London Mathematical Society, vol. 6 (1931), pp. 117-126. L. S. Bosanquet and E. H. Linfoot, Generalized means and the summability of Fourier series, Quarterly Journal of Mathematics (Oxford Series), vol. 2 (1931), pp. 207-229. Moursund, loc. cit.

[^2]: \dagger Loc. cit., first paper.
 \ddagger A. F. Moursund, On a method of summation of Fourier series, Annals of Mathematics, (2), vol. 33 (1932), pp. 773-784.
 § E. W. Hobson, The Theory of Functions of a Real Variable, 2d ed., vol. 2 Chapter 7.
 || See Moursund, second loc. cit., pp. 779-780. Lemma 5.1 holds for $N_{\beta}(t)$ is non-negative and monotone increasing on $(0,1)$.

[^3]: \dagger It can be shown by using Lemma 1 that the $O(1)$ terms are $o(1)$ as $n \rightarrow \infty$.
 \ddagger U. S. Haslam-Jones, A note on the Fourier coefficients of unbounded functions, Journal of the London Mathematical Society, vol. 2 (1927), pp. 151154 (Theorem 2).

[^4]: \dagger Szegö, loc. cit., uses this Fourier series expansion in obtaining his formula for ρ_{n}.

