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and curvature types of triply infinite families of curves. The re-
results are summarized in the following table; the two types 
compared are named in the left-hand column ; their intersection 
is identified in the center; and the number, that is, the infini
tude, of (protectively different) common families is given at the 
right. 

Dynamical Sectional: Special central fields or oo/0> 
General cones 

Dynamical Curvature: Any central field oo/(2> 
Sectional Curvature : General cones and 

Quadric surfaces ooA1)*2 

The 2 in the exponent of °o refers of course to two arbitrary 
constants, while (according to a notation which I proposed in 
this Bulletin in 1912, in a review of Riquier's treatise on partial 
differential equations) / ( l ) means an arbitrary function of one 
independent variable, and /(2) an arbitrary function of two 
independent variables. 
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ON NEVANLINNA'S WEAK SUMMATION METHODf 
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1. Introduction. Our principal object in this note is to dis
cuss the function 

Pn(fi) = - fr \f 0(iogcy(i - O-KiogC/a - *» 
7T J 0 I J 0 

sin {Int +1)5* 
X ; dt 

sm s 

ds, 

which, for (3>0 and the "dummy" constant C^e**1, plays a 
role in the theory of summation of Fourier series by Nevan-
linna's weak methodj analogous to the role the Lebesgue 
constants 

t Presented to the Society, June 20, 1934. 
Î F . Nevanlinna, Über die Summation der Fourier1 schen Reihen und Inte

grale, Översikt av Finska Vetenskaps-Societetens Förhandlingar, vol. 64 
(1921-22), A, No. 3, 14 pp. A. F . Moursund, On the Nevanlinna and Bosanquet-
Linfoot summation methods, Annals of Mathematics, (2), to appear. 
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*'2 |sin {In + l)s\ 
(2) 

2 /•' 
Qn = I 

7T J o sin s 
ds, (» = 0, ! , - • • ) , 

play in the theory of convergence of such series, f Nevanlinna's 
weak method is essentially the same as the Bosanquet-Linfoot 
method of zero order. J 

Our principal results concerning the function pn(j3) are given 
by the following theorems. 

THEOREM 1. For each w^O, the function pn(&)—>Pn as /3—>0. 

THEOREM 2. When /3 > 1, the function pw(j8) is uniformly bounded 
with respect to n for all n*t0. 

THEOREM 3. For 0 < / 3 < l , 

4 (llogC)' 

7T2 1 — P 

and 

Pn(l)= — l0g Clog log » + 0 ( l ) . 

2. Nevanlinna's Weak Summation Method. Applied to the 
Fourier series generated by a Lebesgue integrable function ƒ(x), 
Nevanlinna's weak method consists in forming from the well 
known expression for the sum of n terms of the series the 
Np transform 

1 f1 r * sin {Int + 1 ) 0 - s)/2 
(3) N,Sn(x) = - N,{t)dt f(s) ^ — \ ds, 

2TTJQ J-r sm (x — s)/2 

where 

f L. Fej ér, Lebesguesche Konstanten und Divergente Fourier reihen, Journal 
fiir Mathematik, vol. 138 (1910), pp. 22-53. Fej ér shows in that paper that 
P»~(4/*-2) log w + 0 ( l ) . T. H . Gronwall, Ûber des Lebesgueschen Konstanten bei 
den FourierschenReihen, Mathematische Annalen, vol. 72 (1912), pp. 244-261. 
G. Szegö, Uber die Lebesgueschen Konstanten bei den Fourierschen Reihen, 
Mathematische Zeitschrift, vol. 9 (1921), pp. 163-166. 

% L. S. Bosanquet and E. H. Linfoot, On the zero order summability of 
Fourier series, Journal of the London Mathematical Society, vol. 6 (1931), 
pp. 117-126. L. S. Bosanquet and E. H. Linfoot, Generalized means and the 
summability of Fourier series, Quarterly Journal of Mathematics (Oxford Series), 
vol. 2 (1931), pp. 207-229. Moursund, loc. cit. 
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N,(t) = j9(logO"(l - t)-KlogC/(l - *) ) -"- \ 

with /3>0 and C^e 3 + 1 , and in taking the limit 

(4) lim Nf,Sn(x). 
n—>oo 

Bosanquet and Linfoot have given an example, which will 
serve equally well for Nevanlinna's weak method, of a contin
uous function ƒ(x) whose Fourier series diverges at x — 0 when 
summed by their zero order method with 0< /3^1 . f For /3>1, 
Nevanlinna's method, and consequently the Bosanquet-Lin-
foot zero order method, is Lebesgue effective. J 

3. The Function pn(fi)> Upon changing the order of integra
tion in (3), we see that, for the values of /3 for which the function 

1 rr l r1 

(5)P»03,*) = — Ij Nt 

sin (Int + l)(x - s)/2 

,(0 ~~ — * 
sin (x — s)/2 

ds 

becomes infinite with n, functions continuous on ( — w, T) can 
be constructed for which (i) the limit (4) does not exist at the 
point x, (ii) the limit (4) exists at x but does not exist uniformly 
in any neighborhood of that point. § Setting x = 0 in (S) we ob
tain, after slight simplification, the function pn(P) defined in 
the introduction. 

4. Lemmas. In the statements and proofs of our lemmas and 
theorems, /3>0, C^e^+l, and n^O unless otherwise stated. 
Proofs which the reader can readily supply are merely indicated 
or omitted entirely. 

LEMMA 1. For 2ns^T 

/

tl sin 1 1 r1 

Np(t) 2nst dt\S I Np(t)dt 
0 COS J I J l-7r/(2ns) 

= (logC)^(log2C^A)~ /3-ll 
f Loc. cit., first paper. 
t A. F . Moursund, On a method of summation of Fourier series, Annals of 

Mathematics, (2), vol. 33 (1932), pp. 773-784. 
§ E. W. Hobson, The Theory of Functions o f a Real Variable, 2d éd., vol. 2 

Chapter 7. 
|| See Moursund, second loc. cit., pp. 779-780. Lemma 5.1 holds for Np(t) 

is non-negative and monotone increasing on (0,1). 



458 A. F. MOURSUND [June, 

LEMMA 2. pn(J3) = pn*(/3)+0(l) , where 

2 r1'2 II rl 

TT J 0 S I •/ o 
(6) pn*(fi) = — I — Np(t) sin 2nstdt ds, 

and the 0(1) terms are uniformly bounded with respect to /3, C, 
and w.f 

LEMMA 3. For z;>0, 

f - / l o g C X-^-1 1 / 1 \ 

PROOF. We write 

7- /."• r[(i+,)""'- (!!7£+i+,r"*--**] 

/log c x-"-1 ) 

ƒ
• oo •» logC/v r* oo 

log C fw 1 log C 1 
^ ( / 3 + l ) — (1+/)-^-2^+ - = - — + - • 

LEMMA 4. För r sufficiently large, 

f A>(1— /) cos r* A = 0(log C)' {(log r)H»/j8 + 0(log r)^" 1} > 0, 
J o 

J 7^(1 - t) sin r* * = O [(log r)-^"1] . 
^ o 

PROOF. The lemma, except for the term 0[(log r)-P~l] in the 
first part, follows immediately from a theorem concerning Four
ier coefficients due to U. S. Haslam-Jones.J Upon inspection of 

t It can be shown by using Lemma 1 that the 0(1) terms are o(l) as »-» oo. 
J U. S. Haslam-Jones, A note on the Fourier coefficients of unbounded f unc

tions, Journal of the London Mathematical Society, vol. 2 (1927), pp. 151-
154 (Theorem 2). 
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the proof given by Haslam-Jones, the reader will see how, with 
the aid of Lemma 3, our result can be obtained. 

LEMMA 5. 

. , 2 4 * cos 2mr 
| sin r J = 2^ 1 

7T T m^i 4W2 — 1 

LEMMA 6. For M^e and n^M, 

* l rn l l 
\ . I — n0nr r\-p c o s 2mr dr < . 

wZi 4 m 2 - 1 J M r 2M 

PROOF. I t can be shown by means of the second mean value 
theorem that each of the integrals ^1/M. The lemma follows, 
because 

4m2 - 1 2 

5. Proof of Theorems. In this paragraph we prove our 
theorems. 

PROOF OF THEOREM 1. Integrating by parts, we have 

2 rv'2\ 2ns r1 

PM = - l + (logO^-r- (log c/(l - *))"* 
7T J o I sin s J o 

X cos (2nt + l)s dt dSy 

and the theorem follows by elementary theorems concerning 
limits. 

PROOF OF THEOREM 2. When n^T,we have at once pn*(P) S 2 ; 
and when n >7r, we have for /? > 1, using Lemma 1, 

Pn*(P) g 0(1) + — (log Cy f — (log 2Cns/T)-* ds = 0(1). 
7T J r/(2n) S 

2 f1'2 1 

Ti-/(2n) ^ 

The theorem follows by Lemma 2. 

PROOF OF THEOREM 3. By Lemma 2, 

Pn(|8) =P»*0*)+O( l ) . 

f Szegö, loc. cit., uses this Fourier series expansion in obtaining his formula 
for pn. 
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Using Lemmas 4, 5, and 6, we have, for a fixed sufficiently large 
M and n>M, 

2 | - /»M/(2n) /» 1/2 -I 1 I /» 1 

Pn*(/3) = — + I — I N„(t) sin 2*w< 
7T L J 0 *^ilf/(2n)J ^ I «̂  0 

= 0(1) + — I — I Np(t)smrtdt \dr 

2 rn 1 \ r1 

= — I — sin r I Np(l — i) cos rt dt 
7T J M T \ J 0 

J/ ds 

— cos r !<ft dr + 0(1) - I Np(l - t) sin rt 
J o 

2 /• n I sin r I f x 

= — I J —L dr I #0(1 - /) cos rt dt + 
-ïï J M r J 0 

2(3(\og Cy ( 2 rn 1 (log r)-? 

0(1) 

3/ 2 rn 1 

I T J M r 

_£ A 1 r 
T m = = i 4 w 2 — W i i 

j8 
dr 

n (logr)"^ 
cos 2wr dr 

J*w I sin r I _ _ ) 

J -0[(logr)-^]dr[ + 0(1) 
M r ) 

= — (log C)' f — (log r)-* dr + 0(1). 
7T2 J M T 

The lemma follows when we carry out the integration. 

T H E UNIVERSITY OF OREGON 


