1934.] NEVANLINNA’S METHOD 455

and curvature types of triply infinite families of curves. The re-
results are summarized in the following table; the two types
compared are named in the left-hand column; their intersection
is identified in the center; and the number, that is, the infini-
tude, of (projectively different) common families is given at the
right.

Dynamical Sectional: Special central fields or oo /M
General cones
Dynamical Curvature: Any central field /()
Sectional Curvature: General cones and
Quadric surfaces 00 (1)+2

The 2 in the exponent of © refers of course to two arbitrary
constants, while (according to a notation which I proposed in
this Bulletin in 1912, in a review of Riquier’s treatise on partial
differential equations) f(1) means an arbitrary function of one
independent variable, and f(2) an arbitrary function of two
independent variables.
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ON NEVANLINNA’S WEAK SUMMATION METHOD{
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1. Introduction. Our principal object in this note is to dis-
cuss the function

2 /2
Pn(ﬁ) = :L
(1)

[ pogcya — prsosc/s — s

sin (2nt + 1)s
o Sn (@nt + 1)s

- dt|ds,
sin s

which, for >0 and the “dummy” constant C=Zef*!, plays a
role in the theory of summation of Fourier series by Nevan-
linna’s weak method} analogous to the role the Lebesgue
constants

1 Presented to the Society, June 20, 1934.

t F. Nevanlinna, Uber die Summation der Fourier'schen Reihen und Inte-
grale, Oversikt av Finska Vetenskaps-Societetens Forhandlingar, vol. 64
(1921-22), A, No. 3, 14 pp. A. F. Moursund, Oz the Nevanlinna and Bosanquet-
Linfoot summation methods, Annals of Mathematics, (2), to appear.
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(2) _ —f1/2

play in the theory of convergence of such series.} Nevanlinna’s
weak method is essentially the same as the Bosanquet-Linfoot
method of zero order.}

Our principal results concerning the function p,(8) are given
by the following theorems.

sin 27 4+ 1)s

sin s

dS, (”=0)1y"')>

THEOREM 1. For each n=0, the function p,(8)—p. as f—0.

THEOREM 2. When > 1, the function p.(B) is uniformly bounded
with respect to n for all n=0.

TaEOREM 3. For 0<f<1,

4 C
pn(8) = — (1 BV 1og ny=# + O(1),

and
4
pn(1) = - log C log log n 4+ O(1).
™

2. Nevanlinna's Weak Summation Method. Applied to the
Fourier series generated by a Lebesgue integrable function f(x),
Nevanlinna’s weak method consists in forming from the well
known expression for the sum of # terms of the series the
Ng transform

sin 2nt + 1)(x — s)/2
sin (x — 5)/2

Sy

1 1 T
(3) NoSula) = f Nat)ds f_, 1)

where

t L. Fejér, Lebesguesche Konstanten und Divergente Fourierreihen, Journal
fir Mathematik, vol. 138 (1910), pp. 22-53. Fejér shows in that paper that
on~(4/7%) log n4+0(1). T.H.Gronwall, Uber des Lebesgueschen Konstanten bes
den Fourierschen Reihen, Mathematische Annalen, vol. 72 (1912), pp. 244-261.
G. Szegd, Uber die Lebesgueschen Konstanten bei den Fourierschen Reihen,
Mathematische Zeitschrift, vol. 9 (1921), pp. 163-166.

L. S. Bosanquet and E. H. Linfoot, On the zero order summability of
Fourier series, Journal of the London Mathematical Society, vol. 6 (1931),
pp. 117-126. L. S. Bosanquet and E. H. Linfoot, Generalized means and the
summability of Fourier series, Quarterly Journal of Mathematics (Oxford Series),
vol. 2 (1931), pp. 207-229. Moursund, loc. cit.
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Ng(t) = B(log C)¥(1 — £)~*(log C/(1 — 1)),
with >0 and C=ef+!, and in taking the limit
4) lim NS, (x).

H—> 0
Bosanquet and Linfoot have given an example, which will
serve equally well for Nevanlinna's weak method, of a contin-
uous function f(x) whose Fourier series diverges at x =0 when
summed by their zero order method with 0<8=1.1 For >1,
Nevanlinna’s method, and consequently the Bosanquet-Lin-
foot zero order method, is Lebesgue effective.{

3. The Function p,(8). Upon changing the order of integra-
tion in (3), we see that, for the values of 8 for which the function

1 sin 2nt + 1)(x — 5)/2
fo o) sin (x — s)/2

dt|ds

1 T
(5) oul8, ) = 5 1] -

becomes infinite with #, functions continuous on (—, m) can
be constructed for which (i) the limit (4) does not exist at the
point x, (ii) the limit (4) exists at x but does not exist uniformly
in any neighborhood of that point.§ Setting x=0 in (5) we ob-
tain, after slight simplification, the function p,(8) defined in
the introduction.

4. Lemmas. In the statements and proofs of our lemmas and
theorems, 83>0, C=eft!, and #=0 unless otherwise stated.
Proofs which the reader can readily supply are merely indicated
or omitted entirely.

LEMMA 1. For 2ns ==

1 sin
f N(2) } 2nst dt ‘
0 COos

t Loc. cit., first paper.

1 A. F. Moursund, On a method of summation of Fourier series, Annals of
Mathematics, (2), vol. 33 (1932), pp. 773-784.

§ E. W. Hobson, The Theory of Functions of a Real Variable, 2d ed., vol. 2
Chapter 7.

| See Moursund, second loc. cit., pp. 779-780. Lemma 5.1 holds for Np(t)
is non-negative and monotone increasing on (0, 1).

IIA

fl Np(t)dt
1—7/(2ns)
(log C)8(log 2Cns/m)~8.||
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LEMMA 2. p.(8) =p,.*(8) +0(1), where

ds,

2 1/2 1 1
©) kB = — f ""lf No(0) sin 2mst ds
iy 0 N 0

and the O(1) terms are uniformly bounded with respect to 8, C,
and n.t

LEMMA 3. For v>0,

©/log C -1 1 1
f < + 1+t) cose‘“’dt=-————|—0<——>.
0 ] B ]

Proor. We write

1 © © log C —8-1
— i -1 —tv
5 j; fo [(I—I—t) < . -|—1—|—t> cos ¢ dt]
) 1 —B—1
gf {[(1+t)—ﬂ—1— (ig——c— +1+t> ]
0 ?

log C -1
+ <—~— —I—l—l—t) 6—2“’/2}031!
v

© logC /v 0
é(ﬂ—}—l)f dtf (1+t+u)*ﬂ"2du+f e~ /2 dt
0 0 0

log C ~ 1 logC 1
=B+ —— f (k)52 di ===
0

9 4y

LeMMA 4. For v sufficiently large,

1
f Ns(1— 1) cos rt dt = B(log C)#{ (log r)~#/8 + O(log r)~#-1} > 0,
0

fl Ng(1 — ¢) sin 72 dt = O[(log r)=#-1].

ProoF. The lemma, except for the term O[(log )—#-1] in the
first part, follows immediately from a theorem concerning Four-
ier coefficients due to U. S. Haslam-Jones.{ Upon inspection of

1 It can be shown by using Lemma 1 that the O(1) terms are o(1) asn— 0.

1 U. S. Haslam-Jones, A note on the Fourier coefficients of unbounded func-
tions, Journal of the London Mathematical Society, vol. 2 (1927), pp. 151~
154 (Theorem 2).
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the proof given by Haslam-]Jones, the reader will see how, with
the aid of Lemma. 3, our result can be obtained.
LEMMA 3.

4 =2 cos Zmr

|smr|————z

T m=1 4’}%2 _ 1

LEMMA 6. For M =eand n= M,

> [ 2 og o cos 2mrar <
— (log 7)™F cos imr ar = ——.
M T 8 2M

me1 4m? — 1

Proor. It can be shown by means of the second mean value
theorem that each of the integrals <1/M. The lemma follows,
because

5. Proof of Theorems. In this paragraph we prove our
theorems.

Proor or THEOREM 1. Integrating by parts, we have

2 w2
Pn(ﬁ) = :j;

2ns (!
L+ (og 0 == [ (og ¢/t — )
sin sJ ¢
X cos (2nt + 1)s dt| ds,

and the theorem follows by elementary theorems concerning
limits.

Proor orF THEOREM 2. When 7z <7, we have at once p,*(8) <2;
and when # >m, we have for 3> 1, using Lemma 1,

1/2 1
pa¥(B) = 0(1) + — (1og C)ﬂf — (log 2Cns/m)~* ds = O(1).
w/(2n) S
The theorem follows by Lemma, 2.
Proor or THEOREM 3. By Lemma 2,

pa(B) = pa*(B) + O(1).

t Szegs, loc. cit., uses this Fourier series expansion in obtaining his formula
for p,.
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Using Lemmas 4, 5, and 6, we have, for a fixed sufficiently large
M and > M,

2 M[(2n) 1/2 1
=
™ 0 M/(2n) S

2 n o1
oy += [ =
™ M 7

2 rm 1

m M r

Il

pn* (18)

1
f Ng(2) sin 2nst dt‘ds
0

Il

dr

1
f Ng(t) sin rt di
0

1
sin rf Ng(1 — ¢) cos rt dt
0

1
— cos rf Ng(1 — &) sinrt dt
0

dr + 0(1)

2 |sin7| !
= -——f dr f Ng(1 — ¢) cos rt dt + O(1)
T Juy

4 0

_ 2B(log C)? {z [ 1 (ogn)?
iy M r ﬁ 4

4 = 1 f” (logr)—*

™

cos 2mr dr

T m=1 4m2_1 M

+ fn l sin rl O[(log r)—ﬁ—l]d,,} + O(l)

r
4 » 1
= — (log C)ﬁf —-(log )P dr + 0(Q1).
w2 M r
The lemma follows when we carry out the integration.
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