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are not both even. If a is even and b odd, then b, fr + 2, a+b are 
the only odd numbers in (8). Hence a and b are both odd. Then 
the only odd numbers (8) are 

(9) a, b,a + 2, b + 2. 

Hence ra^lO. Thus m = 8. Then (9) are congruent to 1, 3, 5, 7 
in some order. By their sums, a+& = 2 (mod 4), whence a^b. 
Hence b^a+4 (mod 8). 

THEOREM 5. If m is even and > 8, there is no 3-set (7). If m = 8, 
(7) is a 3-set if and only if a, b is one of the pairs 1, 5 or 3, 7. 
The same result holds if we replace 2+ntx by 6+mx in (7). 
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1. Introduction. In the abstract or formal theory of ordinary 
algebraic differential equations,f the concept of differential field 
as defined by BaerJ has a role analogous to that of field in ab­
stract algebra. § A differential field is a commutative field closed 
with respect to a formally defined operation called differentia­
tion. The defining rules for differentiation are taken from the 
elementary properties of derivatives of functions of a single vari­
able. In this paper, with an abstract theory of partial differential 
equations in mind, we define partial differential fields, selecting 
the defining rules for differentiation from the elementary prop­
erties of partial derivatives of functions of several variables. 

* Presented to the Society, March 31, 1934. 
f Raudenbush, Differential fields and ideals of differential forms, Annals of 

Mathematics, vol. 34 (1933), pp. 509-517; and Ideal theory and algebraic differ­
ential equations, Transactions of this Society, vol. 36 (1934), pp. 361-368. 
Also, O. Ore, Formate Theorie der linear en Differ entialgleichungen, Journal 
für Mathematik, vol. 167 (1933), pp. 221-234, and vol. 168 (1934), pp. 233 
252. 

X R. Baer, Algebraische Theorie der differentierbaren Funktionenkörper I, 
Heidelberger Sitzungsberichte, 1927-28. 

§ For the terms and theorems of abstract algebra, see van der Waerden, 
Moderne Algebra. 
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The object of this paper is to establish for partial differential 
fields analogs to Steinitz's theorems on transcendental exten­
sions of fields. As in the case of differential fields,* the only con­
siderable variation in the proofs from those in the algebraic 
theory is in the proof of the transitivity of dependence. Since 
dependence is here defined by means of partial differential equa­
tions, the necessary elimination is seriously complicated. This 
proof is given in full. The rest of the proofs may easily be sup­
plied along the lines of the simpler theories. 

2. Definitions and Results. Let m be a. positive integer and J 
a commutative field as in abstract algebra. We shall say that J 
is a partial differential field with m types of differentiation if the 
following conditions hold : 

(a) There is defined for each positive integer i ^ w a n associa­
tion of the elements of J by which there corresponds to each 
element a of J a unique element hi(a) called the derivative of a 
of type i. The operation of taking a derivative of type i is called 
differentiation of type i. 

(b) For any elements a and b of J and differentiation of any 
type i^rn, 

di(a + b) = di(a) +5i(b), 

ài(ab) = ôi(a)b + aôi(b). 

(c) For any element a of J and differentiation of any types 
i^m and J S m, 

ài(ôi(a)) = ôiiôjia)). 

By an extension J' of a partial differential field J with m types 
of differentiation, we shall mean a partial differential field J' 
with m types of differentiation which contains 7 as a subset in 
such a way that sums, products, and derivatives of the various 
types of elements of J are the same in J'. 

By a derivative of an element a of a partial differential field 
with m types of differentiation, we shall mean any symbol 
8JI(S/2(S,-8( • • • bjn(a) - • - ))), where n is a positive integer, and 
the j take on certain integral values from 1 to m. By (c), the 
order in which the j appear is immaterial. A polynomial with 

* Raudenbush, Differential fields, loc. cit. References are given here for the 
algebraic theory. 
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coefficients in a partial differential field J in elements of a subset 
A of an extension J' of J and their derivatives is called a form 
in elements of A with coefficients in J* 

Let a be an element of an extension J' of a partial differential 
field J. If a form in a with coefficients in J not all zero is zero in 
7 ' , then we shall say that a is algebraically transcendental with 
respect to J. f If an element of J' is not algebraically transcen­
dental with respect to J, we shall say that it is hyper transcen­
dental with respect to J. % 

If every element of an extension J' of a partial differential 
field J is algebraically transcendental with respect to J, then 
we shall say that J' is an algebraically transcendental extension 
of J. If an extension J' of a partial differential field J is not an 
algebraically transcendental extension of J, we shall say that it 
is a hyper transcendental extension of J. 

Let A be a set of elements of an extension J' of a partial differ­
ential field J. Then the set of all quotients of forms in elements 
of A with coefficients in J, the denominators not zero, is an ex­
tension of J and will be denoted by J (A). Suppose that each 
element a» of a set A of elements of J' is hypertranscendental 
with respect to y (A {), where A t- is the set consisting of all ele­
ments of A except a»-. Then we shall say that A is irreducible 
with respect to y and that J {A) is a purely hypertranscendental 
extension of J. We are now able to state the following results. 

THEOREM 1. A hypertranscendental extension J' of a partial 
differential field J contains a subset A irreducible with respect to 
y such that yr is an algebraically transcendental extension of the 
purely hypertranscendental extension y (A ) of J. 

The set A in the preceding result is not uniquely determined. 

THEOREM 2. If two sets B and C satisfy the conditions on A 
in the preceding theorem, then B and C have the same number 
{which may be transfinite) of elements. 

* J. F . Ritt , Differential Equations from the Algebraic Standpoint, p. 157. 
t This definition differs from that of A. Ostrowski, Über Dirichletschen 

Reihen una algebraische Differ entialgleichungen, Mathematische Zeitschrift, 
vol. 8 (1920), pp . 241-298. According to Ostrowski, an element is algebraically 
transcendental if and only if it satisfies an algebraic Mayer system. 

t The term "hypertranscendental", erroneously attributed to A. Bloch, is 
due to E. Maillet, Comptes Rendus, vol. 142 (1906), p. 829. 
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This number we call the degree of hyper transcendency of Jr 

with respect to J. 

THEOREM 3. If the degree of hyper transcendency of an extension 
J' of a partial differential field J is denoted by r and of an extension 
7" of J' with respect to J' by s, then the degree of hyper transcend­
ency of J" with respect to J is r+s. 

These theorems are seen to be analogs to Steinitz's theo­
rems on degree of transcendency. As stated in §1 we omit the 
proofs except that of a lemma given in §3. 

3. The Fundamental Lemma. This lemma, which is necessary 
to the results of §2, is essentially the analog to the theorem on 
the transitivity of algebraic dependence. Its proof, alone, of the 
proofs of the theorems of §2 and the lemmas necessary there­
unto, presents new difficulties, hence it is given in full. The 
lemma is stated in terms of the concepts defined in this paper, 
rather than in terms of dependence. 

LEMMA.* Let J' be an extension of a partial differential field J 
with m types of differentiation. Let t be an element and V a set 
of elements such that t is algebraically transcendental with respect to 
J{ U) and each element of U algebraically transcendental with re­
spect to J. Then t is algebraically transcendental with respect to J. 

Let ôj1(ô,-2(ô/8( • • • (àjn(a) • • • ))) be a derivative ha of an ele­
ment a of J'. We shall say that n is the total order of ha. The num­
ber of f s that take the value of a certain i^mwe call the partial 
order of da with respect to i. We regard the symbol a as a deriva­
tive of the element a whose total and partial orders are all zero. 
Two derivatives are considered distinct if and only if there is a 
difference in their partial orders. It will not matter that distinct 
derivatives may represent elements equal in J'. 

We proceed now to order the derivatives of any element aoij'. 
Let the derivatives ôxa and ô2a of a have ki and /;, respectively, 
as their partial orders with respect to i^m. We shall say that 
dla is higher than ô2a if either of the following conditions holds. 

(a) 8la is of greater total order than S2a; 

* For the proof of the corresponding lemma for differential fields, see 
Ostrowski, loc. cit., and Raudenbush, Differential fields, loc. cit. Our present 
lemma is different from Ostrowski's theorem, loc. cit., p. 278, for partial differ­
entiation, since our definition of algebraically transcendental differs from his. 
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(b) bla is of the same total order as b2a and the first difference 
ki — li tha t is distinct from zero is positive. 

If S1^ is higher than 5%, we shall also say that b2a is lower than 
ô1^. Given two distinct derivatives, one must be higher than 
the other. 

By the hypothesis of the lemma, there exists a form in t with 
coefficients in J(U) not all zero which vanishes in J'. In the set 
r of all such forms there exists a form G(i) having the following 
properties : 

(a) The highest derivative blt effectively present in G is not 
higher than the highest derivative effectively present in any 
other form of V. 

(b) The highest power of 8lt effectively present in G is not 
higher than the highest power of dlt effectively present in any 
form of r that satisfies (a). 

We shall assume, as we may, that G is written as a form in the 
elements of U. Now S = dG/d(81t) T^O, since 5 either is of lower 
degree than G in blt or does not contain dlt. Let 52/ be ôi(ôlt), 
regarded as a derivative of /. Then 

(1) bH = A/S, 

where A and 5 are forms in / and the elements of U with coeffi­
cients in J containing only derivatives of t which are lower than 
hH. 

The equation (1) involves a finite number of elements 
ui, - - - , ur of U and their derivatives. Proceeding as above, we 
may obtain for each Uj, (J = 1, • • • , r), a relation 

(2) Vui^Aj/Si, 

where A3- and 5 / ^ 0 are forms in Uj with coefficients in J con­
taining only derivatives of u3- that are lower than the derivative 
hlUj of Uj. 

If hxUj is lower than the highest derivative of u3 in (1), we 
differentiate the relation (2) until we obtain a relation 

(3) 6*u, = BilCu 0 ' = 1, ' ' • , 0 , 

where o2u3- is a derivative of Uj higher than any derivative of 
Uj in (1) and the forms Bj and Cjj^O are forms in Uj containing 
only lower derivatives of Uj than Ô2Uj. 
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Let the total orders of h2t and d2u3- be, respectively, k and k3. 
Let p be a positive integer and denote by S3/ and hzu3 any deriva­
tives of / and Uj which are also derivatives of h2t and d2u3 and 
which have total orders not greater than k+p and k3+p, re­
spectively. By suitable differentiations, we obtain from (1) and 
(3) the equations 

(4) ÔH = D/E, ô*u, = D3/Eh (j = 1, • • • , r ) , 

where Z) and -E^O are forms in /, uu • • • , ^r containing no de­
rivatives higher than S3/, andZ),- a n d - E ^ O are forms in Uj con­
taining no derivatives higher than bzu3. We assume that all such 
equations have been obtained. Starting with the highest, all de­
rivatives of t appearing on the right sides of these equations 
which are also derivatives of d2t and hence appear on the left 
sides may be successively removed from the right sides. Sub­
sequently, again starting with the highest, all derivatives of u3 

which are also derivatives of d2u3 may be successively removed 
from the right sides. We thus obtain equations of the form 

(5) ÔH = F/J 

for every derivative hzt of / which is also a derivative of h2t and 
which is of total order not greater than k+p, where F and J9*0 
are forms in /, ui, • • • , ur containing only such derivatives of / 
and Uj as are of total order not greater than k+p and k3+p, re­
spectively, and which are not derivatives of 8H and ô2u3, 

C/'=l, • • • ,r). 
The number of such equations is 

1 
a = — (p+ 1) • . . (p + tn), 

ml 
and the number of derivatives of /, u\, • • • , ur appearing in the 
right sides is 

P£—((p+ k + 1) • • • (p+ k + m) 
ml \ 

+ Z (P + h + 1) • • • (P + k3 + m) 

- (r+l)(p+l) • • • (p + m)\ 
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Since the latter expression reduces to a polynomial of degree 
m — \ in p, we may fix upon a value for p large enough so that 
a exceeds j3. 

We now write the equations with a common denominator 
P ^ O o n the right side 

8't = Qfit/P. 

Regarding P and the Q as polynomials in the derivatives of t 
and #1, • • • , wr, let n be the maximum of their degrees. Let y be 
a positive integer to be fixed later. Form all power products Vi 
of total degree y or less of the derivatives d3L We may write 

where the degrees of the Ri regarded as polynomials in deriva­
tives of t, «i, • • • , ur are at most ny. We now regard the Ri 
as linear expressions in power products of the derivatives of 
t, u\, • - • , ur. There are a tmost ((ny+/3) • • • (w7 + l))/j8! such 
power products in the linear expressions Ri. There are exactly 
( ( Y + Û O * * • (Y + 1 ) )A*! distinct power products Vi and hence 
the same number of linear functions Ri. Hence we may choose 
y sufficiently large so that the number of Ri exceeds the num­
ber of terms in the Ri. Since the coefficients of the Ri are in J 
there exists a linear combination of the Ri with coefficients in 
J not all zero which vanishes. The same linear combination of 
the Vi vanishes since P ^ O . This is the form whose existence we 
need in order to prove the lemma. 

BARNARD COLLEGE 


