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ON AN EXPANSION OF THE REMAINDER IN THE 
GAUSSIAN QUADRATURE FORMULA* 

BY J. V. USPENSKY 

1. Introduction. The Gaussian quadrature formula 

(1) f f(x)dx = Axf(xi) + A2f(x,) + • • • + Anf(xn), 

in which Xi, x2, • • • , xn are roots of Legendre's polynomial 

dnxn(x — l ) n 

Pn(x) = — V T - ^ - » 
dxn 

and 
rl Pn(x) 

Ai = I dx, (i = 1, 2, • • • , w), 

is exact in case f(x) is an arbitrary polynomial of degree not 
exceeding 2n — 1. Otherwise the formula (1) is only approxi
mate, and the difference between its left and right hand sides 
represents the error or remainder term which will be denoted 
in what follows by Rn> The expression of this remainder, ob
tained, if I am not mistaken, for the first time by A. A. Markoff 
in 1884, is well known. In this article I shall prove that the re
mainder in the Gaussian formula can be expanded into a series 
possessing all the properties of the classical Euler-Maclaurin 
expansion. This is a noteworthy fact, equally important from 
the theoretical and from the practical point of view. 

2. Expression of Rn. In what follows we shall adopt E. Nör-
lund's definition of the Bernoullian polynomial Bn(x) of order n; 
and we shall define the periodic function Bn(x) by the equations 

Bn(x) = Bn(x), for 0 ^ x < 1; 

Ttn(x + 1) = Bn(ff), for all x. 

With these notations, we have, for 0 ^ * 0 ^ 1 , 

* Presented to the Society, June 20, 1934. 
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/

•i 2n B (d) 

f(x)dx + £ - i l l {/(.-i)(l) _ /(-D(0)} 
o ,-i si 

C1 Bin(d - t) 

Jo (2n)\ J 

Taking here 6=xu xit • • • , x„, multiplying the resulting equa
tions by Ai, Aît • • • , An, and adding them, we get 

£ A,f fa) = f f(x)dz 

(2) + — i - t , AJB^Xi) { ƒ * - » ( l ) - / « - " ( O ) } 
( 2 M ) ! <=i 

- x 
1 / ( 2 n ) / A n __ 

(2fi)I t i 

since for ,y = l, 2, • • • , 2« — 1 , 

2 ^ A ( ^ i ) = I B8(x)dx = 0. 
»»i J o 

For brevity, we shall use the notations 

n 

Bp(6 - 0 - 5,(0) = Fp(0, 0 , E 4«Fp(*<, 0 - G9(f). 

Then equation (2) yields 

(3) *«=77T7 f ^ m W / ^ W * . 
(2»)! J o 

3. 77*0 Function Gp(t). I t follows immediately from the defini
tion of the function Gp{t) tha t Gp(0) = GP(1) = 0 . Moreover 

(4) G2,(l - 0 = G*(0, G*-i(l - 0 = - Gu-i(0. 

The proof of these relations essentially depends upon the fact 
that the numbers xi, x2, • • • , xn are symmetrically located with 
respect to §, so that , if these numbers are arranged in increasing 
order, xn-i+i = !—#»• and at the same time -4n-*+i =-4». We have 
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6p(l - O = TtAilB^Xi + t) - 5P(*,)} 

n 
— 22 -An-i+i{7$p(xn-.i+i + t) — -Bp(ffn_t-+i) } 

» - l 

= S ^ * { 2 , ( 1 + * - xt) - 5 , (1 - *,)} = ( - 1) 'C,(0, 

which amounts to the two relations written above. 
Similarly, 

n n n 

E ^ i ^ - l O » ) = 2^^n-»+1^2«-l(^n-*+l) = ^AiB2s-l(l — X{) 

n 

= — ^AiB2+-i(xi), 

whence 
n 

so that C?2«-i(0 can be written in the simple form 

n 

G28_i(/) = ^2Ai"B28~i(xi — / ) . 

Since 

Bri (x) = nl n_ x(x) , 

it follows from the last expression for G2s~.i(t) that 

G*'(*) = - 2sG2,_iOO, 

GJ'W = 2s(2s - l)fGM(0 + E4<£M(*<)1. 

Furthermore 

(6) GL'+IW = 2s(2s+l)G2s-1(t). 

4. 5 ^ <?ƒG28(t). Our main purpose is to show that, for s^n, 
functions G2s(t) do not change sign in the interval 0 < / < l . To 
this end let /5, and as represent the number of distinct roots of 
the equations G2s(t) = 0 and G2s-\(t) = 0 in the interval 0 < / < l , 
respectively. The second of the relations (4) shows that 



874 J. V. USPENSKY [December, 

G28-i(l/2) = 0 ; hence as^ 1. I t follows from the first of the rela
tions (5) and Rolle's theorem that j3, + l ^ a a , because Gu(0) 
= G2,(1) = 0 . Again, using (6) and applying Rolle's theorem 
twice, we get a8^as-.i, so that, for s^nf P8 + l^an. But if 
O ^ / ^ l , we have 

n 

G2n„i(t) = J^AiBtn^Xi- t) 

* - l 

= èi4<Bï»-i(*< - 0 + (2f» - 1) £ ^<(*< - ')2 n~*, 

where the second sum in the right member contains only terms 
in which Xi S t. On the other hand, we have 

n /» I 

J2AiB2n-l(Xi - t) = I B2n-l(% - t)dx 
< - l ^ 0 

= —{B2n(l - 0 " ^2n ( - *)} = ~ ^ - 1 , 
2w 

because jB2n-i(# —2) is a polynomial in # of degree 2» — 1 . I t fol
lows that G2n-i(t) differs only by a constant factor from the func
tion 

In — 1 st.<* 

which represents the remainder in the Gaussian formula applied 
to the function defined by the equations 

f(x) = (x - / ) 2 w - 2 , if x ^ /, 

/(a;) = 0, if a; > /. 

5. Fundamental Lemma. The equation R0(t)=0 has one and 
only one root in the interval 0 < t < 1. 

PROOF. Let 

R^ = V ^ r — r - EM*i - O2-*-2 

for £ = 0, 1, 2, • • • , 2 » - 2 . The functions R0(t), Rx(t), • • • , 
R2n-z(t) are evidently continuous, but 
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is discontinuous at Xi, x2, • • - , xn. By the fundamental property 
of the Gaussian formula, JR*(1) = i?/t(0) = 0 . On the other hand, 
R£ (t) = -(2n-k-2)Rk+i(t)1fork = 0, 1,2, • • • , 2 » - 3 . Hence, 
if iVft is the number of distinct roots of the equation Rk{t) = 0, 
we shall have, by Rolle's theorem, Nk + 1 ^ Nk+i for & = 0, 1, 
2, • • • , 2 » - 4 . Hence iV2w__3èiVo + 2 w - 3 . But JVW-s + l cannot 
exceed the number of variations of sign of jR2n_2(/) when / in
creases from 0 to 1. Let this number be denoted by iV2n_2. Then 
first, iVo+2^ —2^iV2n-2;and,second,iV2w_2^2w—1. For,jR2w-2(*) 
can change sign not more than once in each of the n — 1 inter
vals (xi, Xi+i), ( i = l , 2, • • • , » —1), and also possibly at / = #i, 
x2, • • • , xw. Since iV0 = a/bèl , the inequality iVo + 2w —2^2^—1 
shows that N0 = an = 1. 

6. Expansion of Rn. Since «„ = 1, the inequality ft + 1 ^ a n ~ 1 
established for ^ ^ w shows that ft = 0, that is, (?2«(/) döw nö/ 
change its sign in the interval0</<l, if s^w. After this funda
mental point has been established, it suffices to use the formula 

G*"(/) = 2s{2s - l)fG*_2(0 + JbAiBu-fa)], 

and to apply repeatedly integration by parts to the integral in 
(3) in order to arrive at the following expansion of Rn*> 

(7) Rn = £ *{/<»"+a-»(l) - /<t»+»-i>(o)} + £*/<2»+2*>(£), 
•-o 

where 

(2n + 2s)lti + A (2n+2s)l 

and where £ is an unknown number between 0 and 1. To show 
that the expansion (7) possesses all the properties of the Euler-
Maclaurin expansion, it suffices to prove that numbers Y2n, 
Y2n+2, 72n+4, • - - alternate in sign. To this end, we remark first 
that 

/
G2n+23(t)dt = ~ T2n+2«, 

0 
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and, second, that the sign of Ö2n+2«(0 in the interval (0, 1) is 
the same as the sign of 

Gf2n+2s(0) = (2» + 2s) {In +2s- 1)72»+*-!. 

Hence 72n+28 and 72n+2s-2 have opposite signs, which was to be 
proved. 

The coefficient Co is positive. For, since for small values of / 
the derivative G2n (t) is greater than 0, G2n(t) will be positive for 
0 < / < l ; hence 72* < 0 and c0>0. Thus in general ( —l)sc8>0. 
The expansion (7) is especially useful in numerical applications 
when all derivatives of an even order à 2n have the same sign 
in (0, 1). For then, if we retain a certain number of terms in (7), 
the error in Rn will in absolute value be less than the first neg
lected term and will have the same sign as this term. 

7. Values of cn. The simplest way of finding the general ex
pressions of Co, ci, c2, - - • consists in taking in the Gaussian 
formula successively ƒ(x) = PnPn, PnPn+2, PnPn+4, • • • . Then 
Co, C\, c2, - • - are one by one determined by a set of linear equa
tions. While this method is theoretically simple, nevertheless 
the actual calculation is very laborious. Here are the expres
sions of c0, ci, c2: 

ƒ 1-2-3 • • • n ï 2 1 
C°~ l ^ + l ) ( ^ + 2 ) ~ - 2n) (2n+l)l' 

n(4:n2+5n-2) 
Cl" 2 4 ( » + l ) ( 2 » - l ) ( 2 » + 3 ) C°' 

n(112nQ+SS4:n5-151n*-1184^3- 105^2+635n-156) 
C2~~ 2S80(n+l)(n+2)(2n--3)(2n--l)\2n+3)(2n+5) *°' 

For particular values of n approximate values of the following 
coefficients c3, c4, • • * can be found without excessive labor by 
another method. 
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