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T E R N A R Y A R I T H M E T I C A L I D E N T I T I E S * 

BY E. T. BELL 

1. Introduction. Two sets of identities are said to be equiva
lent when each set implies the other. By the method of para
phrase, f an elliptic theta identity is equivalent to one or more 
identities in functions with integer variables, the functions usu
ally being subject to restrictions of parity (evenness or oddness 
in sets of variables). On account of their importance for class 
number relations % and other questions concerning quadratic 
forms in two or more variables, it is of interest to have the com
plete set of arithmetical identities equivalent to all the identities 
implied by the addition theorems for the thetas and the trans
formations of the first and second orders that are bilinear in 
thetas and doubly periodic functions of the second kind. Changes 
of q into — g, or increase of the variables by integer multiples of 
half periods in one of the latter identities, produce arithmetical 
equivalents obtainable immediately from the arithmetical 
equivalent of the original identity by proper specialization of 
the parity functions. Hence it is unnecessary to discuss such 
derived identities. Omitting these, we find precisely four identi
ties to be paraphrased : 

(1) E * i ( - u + v+ w)<t>l00(2w} - 2v, q2) = 0; 

(2) 2 M- u + v+ w)*iii(2w, - 2v, q2) = 0; 

(3) X > i ( - « + v + w)<j>122(w, - v, q112) = 0; 

(4) I > 3 ( - u + v+ w)0m(w, - v, q112) = 0; 

where the sum refers to the three products obtained in each 
case from the one written by the substitutions 1, uvw, uwv; and 

<t>rst(%, y) s <t>r8t(x, y, q) = ê{ûr(x + ?)/[#*(>)#*(30]> 

the parameter in the thetas being q. The arithmetical equiva-

* Presented to the Society, October 27, 1934. 
t E. T. Bell, Transactions of this Society, vol. 22 (1921), pp. 1-30, 198-

219. Cited as B. 
t J. V. Uspensky, Bulletin de l'Académie des Sciences de Russie, 1925, 

pp. 599-620, 763-784; 1926, pp. 25-38, 175-196, 327-348. Cited as U. 
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lents of (l)-(4) are stated in §2, and several equivalents of these 
are indicated in §3. 

To prove ( l)-(4) , we take 

A = #«(*), B =#a(y), 

X = #&0), 

in the identity 

Y = My)> 
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reduce the results, for (a, b) = (1, 2), (0, 3), (1, 0), (3, 2), by the 
addition theorems for the thetas ; introduce the doubly periodic 
functions of the second kind by dividing throughout by the ap
propriate product of the thetas ; and finally make the change of 
variables 

x= —u+v-\-w, y = u — v-\-wy z = w-\-v — w. 

The addition theorems used are 

M%)My) - M*)My) = 2tf0(* + y, ?2)#i(* 
M*)My) ~ M*)My) = 2 ^ 0 + y, q*)*i(x 

' x + y 
M*)My) - M*)&i(y) = #*i 

M*)My) - M*)#*(y) = #1 ( 

2 
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• ' <1 
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The arithmetical equivalents of (l)-(4) are summarized at 
the end of §3. 

2. Arithmetical Functions, An arithmetical function is one 
which is finite and single-valued for all sets of integer values of 
the variables. Let f(x, y, z), • • • , L(x, y, z) be arithmetical func
tions of x, y, z subject only to the following restrictions, in which 
x, y, z denote integers. 

(5) ƒ(>, y, z) = ƒ ( - x, - y, - z). 

(6) g(x, y,z) = - g(- *, - y, - *), g(0, 0, 0) = 0. 

(7) F(x, y, z) = F(y, z, x) = F(z, x, y) =F(-x,-y, - z). 
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(8) GO, y, z) = G(y, z, x) = G(z, x, y) = - G ( - x, - y, - z), 

G(0,0, 0) = 0. 
(9) H(x, y, z) = H(y, z, x) = H(z, x, y). 
(10) K(x, y, z) = K(y, z, x) = K(z, x, y) = K(x, z, y). 

(11) L(x, y, z) = L(y, z, x) = L(z, x, y) = - L(x, z, y). 

Thus F(x, y, z) is any even arithmetical function of x, y, z which 
belongs to the cyclic group on x, y, z\ G(x, y, z) is any odd arith
metical function of x, y, z belonging to the same group ; H(x, y, z) 
is any arithmetical function of x, y, z belonging to this group; 
K(x, y, z) is any arithmetical function of x, yy z belonging to the 
symmetric group on x, y, z; and L(x, y, z) is any alternating 
arithmetical function of x, y, z. Note that these functions need 
not be defined when x, y, z are not all integers. 

We can now state arithmetical equivalents of ( l ) -(4) . The 
letters x, y, z denote variable integers, m, n constant integers; 
( —1|#) = ( — i)(*-D/2. €( a) = i? o r o, according as a is or is not, 
the square of an integer > 0 . The equivalents are numbered 
correspondingly to (l)-(4) ; thus (Ii) and (1) are equivalent, etc. 

(Ii) m = x2 + \yz\ # ^ 0, y > 0, z > 0; x, y, z odd: 

X ( - 1 I x)H- %, % - 2z, x + 2y) = 0. 

(Hi) or (IVi) n = x2 + yz; x%0, y > 0,z> 0: 

G( — x, x — z, x + y) — e(n) G(— n1/2, n1/2, 0) 

+ 2 \G(- n1'2, n1'2, r) - G ( - **1/2, r, n^2) \ . 

(II2) m = x2 + 4yz; x^0, odd; y > 0, z > 0: 
( m l / 2 _ l ) / 2 

G ( - a, x - 2s, a + 2y) = e(m) £ ) t G ( - ^1/2> mW> 2r " *) 

- G ( - w1'2, 2r - 1, m1'2)}. 

(IIIi) w = *2 + 4y«; x ^ 0, odd; y > 0, 2 > 0: 

- 2 ( - 1 I * ) ( - l ) 2 / + ^ ( - %, oo - 2z, x + 2y) 
( m i / 2 _ 1 ) / 2 

= e(m) J2 ( - l ) r [ ^ ( - ™1/2, ™1/2, 2r - 1) 
r==1 - F ( - m1/2, 2r - l ,*»1 '2)]. 
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Thus (Hi) is equivalent to (4); (Hi) and (II2) are together 
equivalent to (2) ; and it is evident that (Ii) is the special case 
m = 5 mod 8 of (IIIi). If m = 5 mod 8 in (II2), we get 

(II3) m = x2+4=yz; x ^ 0, odd; y > 0} z > 0;m = 5 mod 8: 

T,G(- x, x - 2s, x + 2y) = 0. 

I t will be seen in §4 that (Hi) is equivalent to the fundamental 
identity of Uspensky (U, loc. cit.), which was shown in a pre
vious paper* to be equivalent to (2) written with different 
arguments (an unsymmetrical form.) 

To indicate the proofs we transform (Ii), (IIIi) into their 
equivalents in terms of ƒ defined in (5), and (Hi), (II2) into 
their equivalents in terms of g defined in (6). 

The summations in what follows extend over some set, which 
need not be specified, of triples of integers xy y, z. The constants 
Cxy9 do not involve the functions ƒ , • • • , L occurring in a par
ticular sum. 

We see first that 

(12) ]C cXV8[f(x9 y, z) + f(y, z, x) + ƒ(*, x, y)] = 0, 

(13) ]T cxyzF(x, y,z) = 0 

are equivalent. For (5) is the only restriction upon ƒ and, by (7), 
F(x, y, z) =F( — xy — y, —2). Hence ƒ may be replaced by F in 
(12). Reduction of the result by (7) gives (13). Thus (12) im
plies (13). Conversely, ƒ (x, y, z) +f(y, £, x) +ƒ(£, xy 3/), considered 
as a function, say F'(x,y, z), oîx,y, z, satisfies all the conditions 
(7) on F{x, y, z). Hence (13) implies (12). Thus (12), (13) are 
equivalent. In the same way 

(14) ]T cxyz[g(x, y, z) + g(y, z, x) + g(z, x, y)] = 0, 

(15) J2 cXyzG{x, y, z) = 0 

are seen to be equivalent. 
Restating (Ii), (IIIi) by means of (12), (13) as their/-equiva

lents we get them in the forms into which (1), (3) paraphrase 
immediately by the method of the paper (B). As the details 
are all simple routine which has been exemplified many times 
in tha t paper and in (B2), we shall omit them. Similarly for 
(Hi), (HQ and (14), (15). 

* E. T. Bell, this Bulletin, vol. 32 (1933), pp. 682-687. Cited as B2. 
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3. Arithmetical Equivalents. By (7), (9) we may replace 
F(x, y, z) by H(x, y, z)+H( — x, —y, —z) in (13); and by (8), 
(9), G(x, yj z) may be replaced by H(x, y, z) — H(—x, —y, — z) 
in (15). Hence (13), (15) imply 

(16) ] £ cxyz[H(x, y, z) + # ( - x, - y, - z)] = 0, 

(17) 2^ Cxy,[H(x, y, z) - H(- a, - y, - z)] = 0, 

respectively. Considered as a function, say Hf{x1 y, z), of x, y, z1 

F{x, y, z)+G(x, y, z) satisfies the conditions (9) on H(x, y, z). 
Hence we may replace H(x, y, z) by F(x, y> z)+G(x, y} z) in 
(16), (17). By (7), (8) the results reduce to (13), (15). Thus 
(13), (16) are equivalent, and likewise for (15), (17). 

We next see that 

(18) X) cxyz[H(x, y, z) - H(x, z, y)] = 0, 

(19) X cxyzL(x, y, z) = 0 

are equivalent. The implication of (18) by (19) follows from 
(11), (9). To see that (18) implies (19), we note that L(x, y, z) 
+K(x, y, z) satisfies the conditions (9). Hence we may replace 
H(x, y, z) by L(x, y, z)+K(x, y, z) in (18). Reducing by (10), 
(11), we get (19). 

Application of the foregoing equivalences to the identities 
in §2 gives their equivalents. Note that in the identities in §2 
the sign of x may be changed in any of the functions, and y, z 
may be interchanged. In this way we find tha t 

(I2) Z ( - 1 I *) £ ( - oc,x-2z,y + 2z) = 0 

is equivalent to (Ii), for the partition as in (Ii), and that (II3) 
is equivalent to 

(II4) HU- x, x ~ 2z, y + 2z) = 0 

for the same partition. Hence, separating x modulo 4, and com
bining (I2), (II4), we see tha t (Ii) and (II3) together are equiva
lent to the pair 

(20) m = x2 + 4ys; x ^ 0, y > 0, z > 0; x, y, z odd; x = j mod 4: 

]T) L(— x, x — 2z, x + 2y) = 0, 

where j is either 1 or — 1. 
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For (Hi) we have the equivalents (21) (II6) below, in which 
the partition is as in (Hi). 

]T[i7(— x, x — z, x + y) — H(— x, x + z, x — y)] 

= e(n) \H(- n1'2, n1'2, 0) - H(- n1'2, 0, n1'2) 

r=l \ 

-H(n1'2, - n1'2, - r) + H(n1'2, - r, - » 1 / 2 ) | 1 ; 

L(- x, x - z} x + y) = e(n) L(- nl/2, n1'2, 0) 

+ ] C \L(- nll2> nll\ r) - Lin1'2, - n1'2, - r) > 

(21) -1/2-

(II.) 

Omitting the ./^-equivalents of (II2), (HIi), we pass to the 
L-equivalent; the partition is as in (II2), (IIIi) : 

~ Z { ( - 1 ) ^ ( - 11 «)=F l} i (— *, * - 2s, * + 2?) 
( w l / 2 - l ) / 2 

(II«) = e(m) 5 2 [ { ( - l ) r ± l}L(-rnl'2,ni1i2,2r- 1) 

+ { ( - l ) ' + l}L(tn1'2, - m1'2, - 2r + 1)], 

the upper or the lower signs being taken throughout. This is 
equivalent to (II2), (HIi). 

The L-equivalents appear to be the most convenient. In 
summary for these, ( l)-(4) are equivalent to (20), (II5), (HO) 
of this section, L being defined by (11). As will be indicated 
next, (IIB) is equivalent to Uspensky's identity. 

4. Conclusion. Let k(x, y, z) be an arithmetical function of 
x, y, z satisfying the conditions 

(22) k(x, y,z) = — k(— x, y, z) = k(x, — y, — z), &(0, y, z) = 0. 

Then k satisfies the conditions (6), and hence g may be replaced 
by k in the ^-equivalent of (II5) or (Hi), since the last pair are 
equivalent. Again, if x, y, z in (22) be replaced by any linear 
homogeneous functions of x, y, z with constant integer coef
ficients not all zero, the transformed k(x, y, z) is an arithmetical 
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function of x, y, z satisfying (22). Conversely, if the determinant 
of the transformation is ± 1, the new ^-identity implies the old 
(the restriction that the determinant be ± 1 , and not merely 
9^0, which would suffice for the existence of the inverse trans
formation, is necessary to ensure that the transformed func
tions shall be arithmetical as defined here). These conditions 
are satisfied by the transformation 

x —> dix + a2y + azz, 

y-*fax + b2y + bsz, 

z—> c\x + c2y + csz, 

which reduces the g-equivalent of (Hi) immediately to Us-
pensky's form. Uspensky's proof was entirely elementary. 
Mordell* gave an elementary proof of an equivalent of Us
pensky's identity, and Oppenheimf gave an elementary proof 
of an identity which I showed^ to be equivalent to Uspensky's. 
I t may be mentioned that the 48 arithmetical expansions of 
functions <frrst(x} y) which are not doubly periodic of the second 
kind, and which will be published shortly in the American 
Journal, lead at once to similar identities concerning quadratic 
forms in seven variables, for example x2+tv+yz-\-wu. The 
general case concerns forms in 4 s + 3 variables; the identities of 
the present paper correspond to s = Q. 
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