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set of positive integers 8i such that Qi(yo, yih, • • • , y***) would 
be resolvable into more than Km factors, which is not the case. 
Each of the functions (7) is a factor oîf(x). 

When we multiply together the simple functions coming from 
the irreducible binomial factors of Q which do not involve yo 
and the irreducible functions coming from the remaining irre
ducible factors of Ç, we have a resolution of f(x) into factors 
belonging to the class C. I t is easily seen that this factorization 
is unique. Thus we have the following theorem. 

THEOREM. A function f(x) belonging to the class C can be ex-
pressed in one and only one way as a product 

ƒ ( » = Ii(x) • • • Im{x)Si(x) • • • Sn(x), 

where each factor belongs to C, the F s are irreducible functions, 
and the S's are simple functions, bo+^bj exp (fi%x), such that the 
ratio of any two (3's in different f unctions is irrational. 
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T H E N U M B E R OF TRISECANTS OF A SPACE CURVE 
OF O R D E R m WHICH M E E T AN i-FOLD SECANT* 

BY L. A. DYE 

The number of trisecants of a space curve Cm, of order w, 
which meet a general line was determined by Zeuthen,f but if 
the line happens to be an i-iold secant, i>2, it lies on the ruled 
surface of trisecants and the formula fails. In algebraic geom
etry some extension of Zeuthen's work to cover this neglected 
case is often necessary, so by means of a correspondence we 
show that the number of trisecants of a Cm which meet an i-fold 
vsecant / is 

(m - 2)[> - m(m - l ) /6 ] - i(h - m + 2) + i(i - 1 ) ( i - 2)/6, 

where h is the number of apparent double points of Cm. 
In the plane determined by / and one of the h' =h — i{i—1)/2 

* Presented to the Society, October 27, 1934. 
t H. G. Zeuthen, Sur les singularités des courbes gauches, Annali di Mate-

matica, (2), vol. 3 (1869), pp. 175-217. 
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bisecants of Cm through any point X on /, let A, B be the points 
of Cm on the bisecant and let Cj, [j = l, 2, • • • , (m — i — 2)], 
denote the points of Cm not on / or the bisecant. The lines A Cj 
and BCj determine 2(m—i — 2) points ju on I, and when all 
of the hf bisecants through the point X are considered there are 
2(m — i — 2)hf points fx determined by each point X. Since the 
relationship between the points X and JJL is symmetrical, there 
exists a [2(m — i — 2)hf, 2(m—i — 2)h'] correspondence. The 
4:(m — i — 2)hf coincidences of this correspondence fall into three 
classes. 

1. In the plane determined by / and a trisecant of Cm meeting 
/ let A, B, C be the points of Cm on the trisecant. If the line 
is thought of as AB, then A C and BC each account for a coinci
dence. Similarly the line may be taken as A C or B C, so that 6 
coincidences arise from each of the x trisecants of Cm meeting /. 

2. Since there are r = m(m — 1) — 2h tangents to Cm meeting an 
arbitrary line, there are r' = r — 2i tangents meeting /. In the 
plane of one of these tangents and /, let A^B be the point of 
tangency and Cj any one of the rn—i — 2 residual intersections 
of Cm not on /. For each line A Cj there arises one coincidence 
due to BCj, hence there are {m — i — 2)rf coincidences due to the 
tangent lines meeting /. 

3. In the plane determined by Z and a tangent to Cm a t one 
of the i intersections with /, call the point of tangency A =B. 
Join A to one of the m — i—1 residual intersections Cj of Cm, 
then the lines joining B to the m — i — 2 remaining points Ck 
determine m—i — 2 coincidences. Since there are m—i—1 choices 
for Cj, and i points on /, there are i{m — i— 1) (m — i — 2) coin
cidences accounted for in this case. 

We now solve the equation 

4(m — i — 2)hf = 6x + (m — i — 2)rf + *(w — i — l)(m — i —2), 

and obtain 

x=(m-2)[h-m(m-l)/6]-i(h-m+2) + i(i-l)(i-2)/6. 
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