A POLAR REPRESENTATION OF SINGULAR MATRICES

BY JOHN WILLIAMSON
Let $A=\left(a_{i j}\right),(i=1,2, \cdots, m ; j=1,2, \cdots, n)$, be a matrix of m rows and n columns, whose elements $a_{i j}$ are complex numbers. It has been shown \dagger that, if $m=n$ and A is non-singular, $A=P_{1} U=U P_{2}$, where U is a unitary matrix, while P_{1} and P_{2} are positive definite hermitian matrices. Moreover in such a polar representation of A, as it has been called, the matrices P_{1}, P_{2}, and U are uniquely determined. We shall show that, if $m=n$ and the rank of A is $r<n, A=P_{1} U=U P_{2}$, where P_{1} and P_{2} are uniquely determined positive hermitian matrices of rank r and U is unitary but no longer unique. Any such representation of course is impossible if $m \neq n$, as by definition both hermitian and unitary matrices are square, but it will be shown that somewhat analogous results exist in this case as well.

As is customary we shall denote the conjugate transposed of A by $A^{*}=\left(a_{i j}^{*}\right)$, where $a_{j}^{*}=\bar{a}_{j i}$, the complex conjugate of $a_{j i}$. We shall use this notation, even if A is a vector, that is, a matrix of one row, so that in this case $A A^{*}$ will simply denote the norm of the vector A. For the sake of brevity we shall use the notations E_{j} for the unit matrix of order j and $0_{i, j}$ for the zero matrix of i rows and j columns.

The matrix $N_{1}=A A^{*}$ is a square matrix of order m and the matrix $N_{2}=A^{*} A$ is a square matrix of order n, and since $N_{1}=N_{1}{ }^{*}$ and $N_{2}=N_{2}{ }^{*}$, both of these matrices are hermitian. Moreover, if the rank of A is r, the rank of N_{1} is r and so is the rank of N_{2}. For, if K is the r th compound \ddagger of A, at least one element $k_{i j}$ of K is different from zero. The element in the i th place of the leading diagonal of the product matrix $K K^{*}$ is $\sum_{t} k_{i t} \bar{k}_{i t}$, which is a positive real number, since $k_{i j}$ is not zero. Accordingly there is at least one r-rowed determinant of N_{1}

[^0]which is not zero, so that the rank of N_{1} is at least r. Since the rank of N_{1} cannot exceed the rank r of A, the rank of N_{1} is exactly r. Similarly the rank of N_{2} is r.

Since N_{1} is a hermitian matrix of rank r, there exists an m rowed unitary matrix X such that \dagger

$$
X N_{1} X^{*}=D=\left(\begin{array}{ll}
D_{11} & 0_{r, m-r} \tag{1}\\
0_{m-r, r} & 0_{m-r, m-r}
\end{array}\right)
$$

where D_{11} is a diagonal matrix of order r. If $B=X A, B^{*}=A^{*} X^{*}$, so that

$$
\begin{equation*}
B B^{*}=X A A^{*} X^{*}=X N_{1} X^{*}=D \tag{2}
\end{equation*}
$$

If we denote the row vectors of B by $b_{i},(i=1,2, \cdots, m)$, the column vectors of B^{*} are $b_{i}^{*},(i=1,2, \cdots, m)$, and the element in the i th row and j th column of $B B^{*}$ is $b_{i} b_{j}^{*}$. It therefore follows from (1) and (2) that $b_{i} b_{i}^{*}=0,(i=r+1, \cdots, m)$. Hence B is a matrix whose last $m-r$ rows are zero so that

$$
\begin{equation*}
B=\binom{B_{1}}{0_{m-r, n}} \tag{3}
\end{equation*}
$$

where B_{1} is a matrix of r rows and n columns. By a similar argument applied to N_{2} instead of to N_{1}, it can be shown that there exists an n-rowed unitary matrix Y such that

$$
\begin{equation*}
A Y=\left(B_{2} \quad 0_{m, n-r}\right), \tag{4}
\end{equation*}
$$

where B_{2} is a matrix of m rows and r columns. From (3) and (4) we deduce that

$$
X A Y=C=\left(\begin{array}{ll}
C_{11} & 0_{r, n-r} \tag{5}\\
0_{m-r, r} & 0_{m-r, n-r}
\end{array}\right)
$$

where C_{11} is an r-rowed square matrix, which is non-singular since the rank of A is r. Since $X N_{1} X^{*}=X A Y Y^{*} A^{*} X^{*}=C C^{*}$, it follows from (1) and (5) that

$$
\begin{equation*}
C_{11} C_{11}^{*}=D_{11} . \tag{6}
\end{equation*}
$$

Denoting by $c_{i},(i=1,2, \cdots, r)$, the row vectors of C_{11}, and by d_{i} the element in the i th place of the diagonal matrix D_{11}, we

[^1]deduce the equalities $c_{i} c_{j}^{*}=0, \quad(i \neq j), \quad c_{i} c_{i}^{*}=d_{i}, \quad(i, j=1$, $2, \cdots, r)$. Hence d_{i} is a positive real number and the vector $c_{i} / d_{i}^{1 / 2}$ is a normalized vector. Consequently the matrix
\[

V_{11}=\left($$
\begin{array}{llll}
d_{1}^{-1 / 2} & 0 & \cdots & 0 \\
0 & d_{2}^{-1 / 2} & \cdots & 0 \\
\cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdots & \cdot \\
0 & 0 & \cdots & d_{r}^{-1 / 2}
\end{array}
$$\right) C_{11}=\left(D_{11}\right)^{-1 / 2} C_{11}
\]

is unitary and

$$
\begin{equation*}
C_{11}=Q_{11} V_{11}, \tag{7}
\end{equation*}
$$

where V_{11} is a unitary matrix of order r and $Q_{11}=\left(D_{11}\right)^{1 / 2}$ is a positive definite hermitian matrix of order r. Using the value of C given by (5), we have, from (7),

$$
\begin{align*}
C & =\left(\begin{array}{ll}
Q_{11} V_{11} & 0_{r, n-r} \\
0_{m-r, r} & 0_{m-r, n-r}
\end{array}\right) \\
& =\left(\begin{array}{ll}
Q_{11} & 0_{r, n-r} \\
0_{m-r, r} & 0_{m-r, n-r}
\end{array}\right)\left(\begin{array}{ll}
V_{11} & 0_{r, n-r} \\
0_{n-r, r} & E_{n-r}
\end{array}\right) . \tag{8}
\end{align*}
$$

Now if $m \leqq n$, this last result may be written in the form

$$
\begin{equation*}
C=\left(Q \quad 0_{m, n-m}\right) V, \tag{9}
\end{equation*}
$$

where

$$
Q=\left(\begin{array}{ll}
Q_{11} & 0_{r, m-r} \\
0_{m-r} & 0_{m-r, m-r}
\end{array}\right), \quad V=\left(\begin{array}{ll}
V_{11} & 0_{r, n-r} \\
0_{n-r, r} & E_{n-r}
\end{array}\right)
$$

Q being a positive hermitian matrix of order m and rank r, while V is a unitary matrix of order n. Moreover, if

$$
\begin{equation*}
C=\left(Q_{1} \quad 0_{m, n-m}\right) V_{1} \tag{10}
\end{equation*}
$$

is another such representation of C, where Q_{1} is a positive hermitian matrix of order m and rank r and V_{1} is a unitary matrix of order n, we see that $C C^{*}=Q_{1} Q_{1}{ }^{*}=Q_{1}{ }^{2}=D$, so that $Q_{1}=D^{1 / 2}=Q$. Accordingly we may write (10) in the form

$$
C=\left(\begin{array}{ll}
Q_{11} & 0_{r, n-r} \\
0_{m-r, r} & 0_{m-r, n-r}
\end{array}\right)\left(\begin{array}{ll}
W_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right),
$$

where W_{11} is an r-rowed square matrix, V_{22} an $(n-r)$-rowed square matrix, V_{12} an r by $n-r$ and V_{21} an $n-r$ by n matrix. Hence

$$
C=\left(\begin{array}{ll}
Q_{11} W_{11} & Q_{11} V_{12} \\
0_{m-r, r} & 0_{m-r, n-r}
\end{array}\right)
$$

and comparison with (8) shows that $W_{11}=V_{11}$ and $V_{12}=0_{r, n-r}$. Since $V_{1} V_{1}^{*}=E_{n}$, it follows easily that $V_{21}=0_{n-r, r}$ and that $V_{22} V_{22}{ }^{*}=E_{n-r}$. Hence the matrix V_{1} in (10) is of the form $V W$, where

$$
W=\left(\begin{array}{ll}
E_{r} & 0_{r, n-r} \\
0_{n-r, r} & V_{22}
\end{array}\right)
$$

and V_{22} is an arbitrary unitary matrix of order $n-r$. We have therefore proved the following lemma.

Lemma. The matrix C can be represented in the form $C=\left(\begin{array}{ll}Q & 0_{n-m}\end{array}\right) V_{1}$, where Q is a positive hermitian matrix of order m and rank r and V_{1} is a unitary matrix of order n. The matrix Q is unique while the matrix V_{1} is one of a set $\left[V_{1}\right]=[V W]$, where V is a fixed unitary matrix and W ranges over a group G of unitary matrices of order n simply isomorphic with the group of all unitary matrices of order $n-r$.

Since $A=X^{*} C Y^{*}$, by (9),

$$
A=X^{*}\left(Q \quad 0_{m, n-m}\right) V Y^{*}=X^{*}\left(Q \quad 0_{m, n-m}\right) X_{1} X_{1}^{*} V Y^{*}
$$

where

$$
X_{1}=\left(\begin{array}{ll}
X & 0_{m, n-m} \\
0_{n-m, m} & E_{n-m}
\end{array}\right)
$$

Hence

$$
A=\left(X^{*} Q X \quad 0_{m, n-m}\right) X_{1}^{*} V Y^{*}=\left(P \quad 0_{m, n-m}\right) U
$$

where $P=X^{*} Q X$ is a positive hermitian matrix of order m and rank r, while $U=X_{1}^{*} V Y^{*}$ is a unitary matrix of order n. If $A=\left(\begin{array}{ll}P_{1} & 0_{m, n-m}\end{array}\right) U_{1}$ is another such representation of A, it follows easily from the previous lemma that $X P_{1} X^{*}=Q$, so that $P_{1}=P$, and that $U_{1}=U Z$, where $Z=Y W Y^{*}$. Accordingly we have proved the following theorem.

Theorem. If A is a matrix of m rows and n columns of rank r and $m \leqq n, A$ can be represented in the form

$$
A=\left(\begin{array}{ll}
P_{1} & 0_{m, n-m} \tag{11}
\end{array}\right) U_{1}
$$

where P_{1} is a positive hermitian matrix of order m and rank r and U_{1} is a unitary matrix of order n. The matrix P_{1} is unique while the matrix U_{1} is one of a set $\left[U_{1}\right]=\left[U Z_{1}\right]$, where U is a fixed unitary matrix and Z_{1} one of a group G_{1} of matrices, simply isomorphic with the group of all unitary matrices of order $n-r$.

Corollary. Under the above hypotheses the totality of unitary matrices Z_{1} for which $A Z_{1}=A$ forms a group simply isomorphic with the group of all unitary matrices of order $n-r$. This group is the group G_{1}.

For if $A Z_{1}=A,\left(\begin{array}{ll}P_{1} & 0_{m, n-m}\end{array}\right) U Z_{1}=\left(\begin{array}{ll}P_{1} & 0_{m, n-m}\end{array}\right) U$, and Z^{1} must lie in G_{1}. Similarly if Z_{1} lies in $G_{1}, A Z_{1}=A$.

If $m \geqq n, A^{*}$ is a matrix in which the number of its rows is at most equal to the number of its columns. Accordingly, under this hypothesis our theorem is true if A is replaced by A^{*}. Hence, if $m \geqq n, A$ can be represented in the form

$$
\begin{equation*}
A=U_{2}\binom{P_{2}}{0_{m-n, n}} \tag{12}
\end{equation*}
$$

where P_{2} is a uniquely determined positive hermitian matrix of order n and rank r and U_{2} is one of a set $\left[U_{2}\right]=\left[Z_{2} U\right]$, where Z_{2} ranges over a group G_{2} simply isomorphic with the group of all unitary matrices of order $m-r$.

When $m=n$, that is, when the matrix A is square, some further results follow. In this case equations (11) and (12) become

$$
\begin{equation*}
A=P_{1} U_{1} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
A=U_{2} P_{2} \tag{14}
\end{equation*}
$$

respectively, where P_{1} and P_{2} are positive hermitian matrices of rank r and U_{1} and U_{2} are unitary matrices. The two groups G_{1} and G_{2} are simply isomorphic; the two sets [U_{1}] and [U_{2}] coincide; if U_{1} belongs to the set $\left[U_{1}\right], P_{2}=U_{1}^{*} P_{1} U_{1}$. The first
statement is obviously true; if U_{1} lies in [U_{1}], $A=U_{1} U_{1}^{*} P_{1} U_{1}$ and, since $U_{1}{ }^{*} P_{1} U_{1}$ is a positive hermitian matrix of rank r, $U_{1}^{*} P_{1} U_{1}=P_{2}$ and U_{1} lies in [U_{2}]. Similarly any member U_{2} of [U_{2}] lies in [U_{1}]. Further the matrix P_{2} is invariant under unitary transformation by any matrix of the group G_{1}, and P_{1} under transformation by any matrix of the group G_{2}. For if Z_{1} lies in $G_{1}, A Z_{1}=A$ so that $A=U_{2} Z_{1} Z_{1} * P_{2} Z_{1}$, and accordingly, $Z_{1}{ }^{*} P_{2} Z_{1}=P_{2}$.

The Johns Hopkins University

ON A THEOREM OF FERAUD

BY D. C. LEWIS, JR.*
The Birkhoff-Pfaffian equations of dynamics are written in variational form as follows:

$$
\delta \int\left[\sum_{i=1}^{2 m} X_{i}\left(\frac{d x_{i}}{d t}\right)+Q\right] d t=0
$$

where Q and the X 's are functions of $x_{1}, \cdots, x_{2 m}$ and, in general, depend also periodically upon t, and where the skew-symmetric determinant $\left|a_{i j}\right|,\left(a_{i j}=\partial X_{i} / \partial x_{j}-\partial X_{j} / \partial x_{i}\right)$, does not vanish in the regions considered. We restrict attention to the neighborhood of a generalized equilibrium point, that is, a point where all the $\partial Q / \partial x_{i}-\partial X_{i} / \partial t$ vanish identically in t. We take this point at the origin, $x_{i}=0,(i=1,2, \cdots, 2 m)$.

The problem of reducing the Pfaffian system to a Hamiltonian system can be reduced to that of finding a non-singular transformation, $x_{i}=x_{i}\left(y_{1}, \cdots, y_{2 m}\right)$, leaving the origin invariant (and depending in general periodically upon t) which reduces the linear differential form $\sum_{i=1}^{2 m} X_{i} d x_{i}$ to the form $\sum_{i=1}^{m} y_{2 i} d y_{2 i-1}$ $+d w$, where $d w$ is an exact differential in $y_{1}, \cdots, y_{2 m}$, the coefficients of which are independent of t. This same problem also will play an important role in a future paper of mine on "conservative" transformations in $2 m$-dimensional spaces.

The problem has been considered by Féraud, \dagger who obtained a

[^2]
[^0]: \dagger L. Autonne, Bulletin de la Société Mathématique, vol. 30 (1902), pp. 121-134. A. Wintner and F. D. Murnaghan, On a polar representation of nonsingular matrices, Proceedings of the National Academy of Sciences, vol. 17 (1931), pp. 676-678.
 \ddagger Turnbull and Aitken, The Theory of Canonical Matrices, p. 27.

[^1]: \dagger Turnbull and Aitken, op. cit., p. 85.

[^2]: * National Research Fellow.
 \dagger Extension au cas d'un nombre quelconque de degrês de liberté d'une propriêté relative aux systèmes Pfaffiens, Comptes Rendus, vol. 190 (1930), pp. 358-360.

