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A POLAR REPRESENTATION OF 
SINGULAR MATRICES 

BY JOHN WILLIAMSON 

Let A = (aty), (i = l, 2, • • • , ra; j = l , 2, • • • , » ) , be a matrix 
of m rows and n columns, whose elements a,-,- are complex num
bers. I t has been shown f that , if m—n and A is non-singular, 
A=PiU= UP2, where U is a unitary matrix, while P\ and P 2 

are positive definite hermitian matrices. Moreover in such a 
polar representation of A, as it has been called, the matrices 
Pi , P2, and U are uniquely determined. We shall show that, if 
m = n and the rank of A is r <n> A = P i U == UP2, where P i and P 2 

are uniquely determined positive hermitian matrices of rank r 
and U is unitary but no longer unique. Any such representation 
of course is impossible if ni^n, as by definition both hermitian 
and unitary matrices are square, but it will be shown that some
what analogous results exist in this case as well. 

As is customary we shall denote the conjugate transposed of 
A by -4* = (at*), where a* *=&,-{, the complex conjugate of a a. 
We shall use this notation, even if A is a vector, tha t is, a matrix 
of one row, so that in this case A A* will simply denote the norm 
of the vector A. For the sake of brevity we shall use the nota
tions Ej for the unit matrix of order j and 0,-f ,• for the zero matrix 
of i rows and j columns. 

The matrix Ni=AA* is a square matrix of order m and the 
matrix N2s=A*A is a square matrix of order n, and since 
Ni = Nj* and N2 = Njf, both of these matrices are hermitian. 
Moreover, if the rank of A is r, the rank of Ni is r and so is the 
rank of N2. For, if K is the fth compound! of -4, at least one 
element ka of K is different from zero. The element in the ith. 
place of the leading diagonal of the product matrix KK* is 
^2tkitkit, which is a positive real number, since ki3- is not zero. 
Accordingly there is at least one r-rowed determinant of Ni 

t L. Autonne, Bulletin de la Société Mathématique, vol. 30 (1902), pp. 
121-134. A. Wintner and F. D. Murnaghan, On a polar representation of non-
singular matrices, Proceedings of the National Academy of Sciences, vol. 17 
(1931), pp. 676-678. 

t Turnbull and Aitken, The Theory of Canonical Matrices, p. 27. 
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which is not zero, so that the rank of Ni is at least r. Since the 
rank of Ni cannot exceed the rank r of A, the rank of iVi is 
exactly r. Similarly the rank of N2 is r. 

Since Ni is a hermitian matrix of rank r, there exists an m-
rowed unitary matrix X such thatf 

(i) 
/Du Or,m-r \ 

XNtX* = D = ( • ) , 

where Dn is a diagonal matrix of order r. If B =XA, B* = A*X*, 
so that 

(2) BB* = XAA*X* = XNiX* = D. 

If we denote the row vectors of B by bit (i = 1, 2, • • • , w), the 
column vectors of J3* are 6f, (i = 1, 2, • • • , m), and the element 
in the ith row and j t h column of BB* is &»•& f. I t therefore follows 
from (1) and (2) that bib? = 0, (i = r + l , • • - , ! » ) . Hence J5 is a 
matrix whose last m — r rows are zero so that 

(3) 5 

where J5i is a matrix of r rows and n columns. By a similar argu
ment applied to N2 instead of to Ni, it can be shown that there 
exists an w-rowed unitary matrix Y such that 

(4) AY = (B2 Om,n-r), 

where B2 is a matrix of m rows and r columns. From (3) and (4) 
we deduce that 

(5) 

where Cu is an r-rowed square matrix, which is non-singular 
since the rank of A is r. Since XNiX* = XAYY*A*X* = CC*, 
it follows from (1) and (S) that 

(6) CuCn* = Dn. 

Denoting by ciy (i = 1, 2, • • • , r), the row vectors of Cu, and by 
di the element in the ML place of the diagonal matrix Du, we 

t Turnbull and Aitken, op. cit., p. 85. 
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deduce the equalities c^f = 0, (i^j), Cicf—di, (i, j = l, 
2, • • • , r). Hence di is a positive real number and the vector 
Ci/di112 is a normalized vector. Consequently the matrix 

dTm 

Vn = 

0 

lo 

0 

dïw .. 

0 

0 1 

0 

, - 1 / 2 

ar 

Cn = (Dnr
luCu 

is unitary and 

(7) Cn = QuVu, 

where Vu is a unitary matrix of order r and Qn = (Ai) 1 / 2 is a 
positive definite hermitian matrix of order r. Using the value of 
C given by (5), we have, from (7), 

(8) 

/QuVu 0r,„_r \ 

\Um—r,r ^Jm—r,n—r/ 

= /Qu 0r,„_r \ /Vn 0r,B_A 

\yJm—r,r ^m—r,n—r/ Wn—r.r •E'n—r / 

Now if tn^n, this last result may be written in the form 

(9) C = (Q 0w>n_m)F, 

where 
__ / C n 0r,w_r \ / ^ n 0r,n_A 

\ U w — r \)m—r,m—r/ Wn—r,r -^"n—r / 

Q being a positive hermitian matrix of order m and rank f, 
while F is a unitary matrix of order n. Moreover, if 

(10) c = «?! 0, »)Fl 

is another such representation of C, where Qi is a positive her
mitian matrix of order m and rank r and Vi is a unitary ma
trix of order n, we see that CC* = Q1Q1* = Qi2 =£>, so that 
Çi=J9 1 / 2 = Ç. Accordingly we may write (10) in the form 

/On 0r,n_r \/Wn V12\ 

\\)m—r,r Um—r,n—r/ \ ' 21 
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where Wn is an r-rowed squa re ma t r ix , V22 an (n — r)-rowed 
squa re ma t r i x , F12 an r by n — r a n d V21 an n — r b y n ma t r ix . 
Hence 

= /QiiWii 011^12 \ 

\^m—r,r ^m—r,n—r/ 

and comparison with (8) shows that Wu= Vu and Fi2 = 0r,n_r. 
Since F i F i * = £ n , it follows easily that V2i = 0n-r,r and that 
F22F22* = En-r. Hence the matrix Vi in (10) is of the form VW, 
where 

W ( Er 0r,n-r\ 

0n-r,r F 2 2 ) 

and F22 is an arbitrary unitary matrix of order n — r. We have 
therefore proved the following lemma. 

LEMMA. The matrix C can be represented in the form 
C—{Q Onr-m) Vi, where Q is a positive hermitian matrix of order 
m and rank r and Vi is a unitary matrix of order n. The matrix 
Q is unique while the matrix Vi is one of a set [Vi]= [VW], 
where V is a fixed unitary matrix and W ranges over a group G 
of unitary matrices of order n simply isomorphic with the group 
of all unitary matrices of order n — r. 

Since , 4 = X * C F * , by (9), 

A = X*(<2 0m,w_m)FF* = X*(Q 0m in-JXiX 1*7F*, 

where 

I <& Vm,n—m\ 
1 \n P )' 

Hence 

A = (X*QX 0m,n_w)Z!*FF* = (P 0m,n-m)U} 

where P = X*QX is a positive hermitian matrix of order m and 
rank r, while U = X? VY* is a unitary matrix of order n. If 
A = (Pi 0m,n-m)Ui is another such representation of A, it 
follows easily from the previous lemma that XPiX* = Q, so 
that P i = P , and tha t 17i= UZ, where Z = FTFF*. Accordingly 
we have proved the following theorem. 
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THEOREM. If A is a matrix of m rows and n columns of rank 
r and m^ny A can be represented in the form 

(H) A = (P1 0m,n-m)UU 

where Px is a positive hermitian matrix of order m and rank r and 
Ui is a unitary matrix of order n. The matrix P i is unique while 
the matrix U\ is one of a set [Ui] = [ t /Zi] , where U is a fixed uni
tary matrix and Z\ one of a group G\ of matrices, simply isomor
phic with the group of all unitary matrices of order n — r. 

COROLLARY. Under the above hypotheses the totality of unitary 
matrices Z\ for which AZi=A forms a group simply isomorphic 
with the group of all unitary matrices of order n — r. This group is 
the group Gi. 

For if AZi=A, (Pi Om>n_m)f/Z1 = (Pi Om,n-m)U, and Z1 

must lie in G\. Similarly if Z\ lies in Gi, AZ\ — A. 
If m ^n, A* is a matrix in which the number of its rows is at 

most equal to the number of its columns. Accordingly, under 
this hypothesis our theorem is true if A is replaced by A *. Hence, 
if m ^ n, A can be represented in the form 

(12) A-vJP% ) , 

where P 2 is a uniquely determined positive hermitian matrix of 
order n and rank r and U2 is one of a set [U2] = \Z<Jj\ where Zi 
ranges over a group G2 simply isomorphic with the group of all 
unitary matrices of order m — r. 

When m=n, tha t is, when the matrix A is square, some 
further results follow. In this case equations (11) and (12) be
come 

(13) A = PiUl9 

and 

(14) A = U2P2, 

respectively, where P% and P2 are positive hermitian matrices 
of rank r and Z7i and U2 are unitary matrices. The two groups 
G\ and G2 are simply isomorphic, the two sets [Ui] and [U2] 
coincide; if Ui belongs to the set [Ui], Pi = £7i*PiZ7i. The first 
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statement is obviously true; if U\ lies in [Ui], A = U\U?P\Ui 
and, since UfPiUi is a positive hermitian matrix of rank r, 
U?PiUi = P2 and Ui lies in [U2]* Similarly any member V2 of 
[U2] lies in [Ui]. Further the matrix P2 is invariant under uni
tary transformation by any matrix of the group Gi, and Pi under 
transformation by any matrix of the group G2. For if Z\ lies 
in Gi, AZi—A so that A = Z72ZiZi*P2Zi, and accordingly, 
ZfPzZ^P*. 

THE JOHNS HOPKINS UNIVERSITY 

ON A THEOREM OF FÉRAUD 

BY D. C. LEWIS, JR.* 

The Birkhoff-Pfaffian equations of dynamics are written in 
variational form as follows : 

8J"[!x-(?£)+e>'-0' 
where Q and the X's are functions of Xi, • • • , x^m and, in general, 
depend also periodically upon /, and where the skew-symmetric 
determinant \ai3'\, {aij — dXi/dXj — dXj/dXi), does not vanish 
in the regions considered. We restrict attention to the neighbor
hood of a generalized equilibrium point, that is, a point where 
all the dQ/dXi—dXi/dt vanish identically in t. We take this 
point at the origin, x t = 0 , (i=*l, 2, • • • , 2m). 

The problem of reducing the Pfaffian system to a Hamiltonian 
system can be reduced to that of finding a non-singular trans
formation, Xi=*x%(yi, • • • , y2m), leaving the origin invariant 
(and depending in general periodically upon /) which reduces 
the linear differential formal™! X{dx{ to the form X]£-i yndyu-i 
+dw, where dw is an exact differential in yit • • • , y2m, the coef
ficients of which are independent of t. This same problem also 
will play an important role in a future paper of mine on "con
servative" transformations in 2ra-dimensional spaces. 

The problem has been considered by Feraud,f who obtained a 

* National Research Fellow. 
f Extension au cas d'un nombre quelconque de degrés de liberté d'une propriété 

relative aux systèmes Pfaffiens, Comptes Rendus, vol. 190 (1930), pp. 358-360. 


