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statement is obviously true; if U\ lies in [Ui], A = U\U?P\Ui 
and, since UfPiUi is a positive hermitian matrix of rank r, 
U?PiUi = P2 and Ui lies in [U2]* Similarly any member V2 of 
[U2] lies in [Ui]. Further the matrix P2 is invariant under uni
tary transformation by any matrix of the group Gi, and Pi under 
transformation by any matrix of the group G2. For if Z\ lies 
in Gi, AZi—A so that A = Z72ZiZi*P2Zi, and accordingly, 
ZfPzZ^P*. 
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The Birkhoff-Pfaffian equations of dynamics are written in 
variational form as follows : 

8J"[!x-(?£)+e>'-0' 
where Q and the X's are functions of Xi, • • • , x^m and, in general, 
depend also periodically upon /, and where the skew-symmetric 
determinant \ai3'\, {aij — dXi/dXj — dXj/dXi), does not vanish 
in the regions considered. We restrict attention to the neighbor
hood of a generalized equilibrium point, that is, a point where 
all the dQ/dXi—dXi/dt vanish identically in t. We take this 
point at the origin, x t = 0 , (i=*l, 2, • • • , 2m). 

The problem of reducing the Pfaffian system to a Hamiltonian 
system can be reduced to that of finding a non-singular trans
formation, Xi=*x%(yi, • • • , y2m), leaving the origin invariant 
(and depending in general periodically upon /) which reduces 
the linear differential formal™! X{dx{ to the form X]£-i yndyu-i 
+dw, where dw is an exact differential in yit • • • , y2m, the coef
ficients of which are independent of t. This same problem also 
will play an important role in a future paper of mine on "con
servative" transformations in 2ra-dimensional spaces. 

The problem has been considered by Feraud,f who obtained a 

* National Research Fellow. 
f Extension au cas d'un nombre quelconque de degrés de liberté d'une propriété 

relative aux systèmes Pfaffiens, Comptes Rendus, vol. 190 (1930), pp. 358-360. 
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solution based on the fundamental existence theorem of Riquier 
for systems of partial differential equations. I t appears, how
ever, highly desirable to give a more elementary proof based on 
existence theorems for ordinary differential equations. The result 
is thus not limited to the analytic case, as it was by the use of 
Riquier's theorem in Féraud's proof. 

Our proof follows a well known line of thought expounded by 
Goursat.* There are several reasons, however, why Goursat's 
writings on the reduction of linear differential forms are not im
mediately applicable. For one thing, the transformations used 
by him do not necessarily leave the origin invariant. Also there 
are important cases where his reasoning might fail, f The present 
treatment does not presuppose a knowledge of Goursat's work. 

We split up our proof into a number of easy lemmas. 

LEMMA 1. Consider a linear differential form ^f^iXidxi 
which under a non-singular transformation of coordinates, 
%i=gi(yii ' • * y Jn), appears also in the form ^T]i=\Yidyi. Then we 
have the following elementary relations : 

(i) 7 , - è j r / ^ Y 

d^ __ dF, = » /dXj__ dXAdgt^ d ^ 

tyr dy% i,j-i\à%i dXj/dyr dy{ 

The proof of (1) is trivial, while (2) is deduced at once from 
(1) by differentiation with respect to yr, interchange of indices, 
and subtraction. In the sequel, we shall uniformly set 
ai3- = dXi/dxj—dXj/dxi} and bii = dYi/dyj — dYj/dyi; so that 
(2) may also be written in the form 

* dgk dgi 
(3) ha = 2J akt — - — 

*,j-i dyi dyj 

* Leçons sur le Problème de Pfaff, 1922, especially Chapter l. 
t For example, if the first method of Chapter I is used, care must be taken, 

in the series of necessary reductions, that at each step the X» (pages 11 and 12) 
do not all vanish at the origin. The present paper does, in effect, just this. If 
the more advanced method of Chapter 4 is used, it would be necessary to com
pute the derived forms. Also the most available results of Chapter 4 are stated 
only for the analytic case. 
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LEMMA 2. Consider the system of ordinary differential equations 

dxi 
— = M*i, • • • , # » ) , (i = 1, 2, • • • , n), 
dyn 

where the fi are defined and of class Cv in the neighborhood of the 
origin. Let gi(yi, • • • > yn-u yn) be the solution which satisfies the 
initial conditions Xi=yi, • • • , #n-i—;yn-i, xn = 0 for yn = Q. Then 
the g's are of class Cp in the neighborhood of the origin, and, if the 
equations Xi — gi(yi, • • • , yn-u Jn) are thought of as defining a 
transformation T of the neighborhood of the origin into itself, then 
T is non-singular if fn(0, • • • , 0 ) ^ 0 . 

The fact that the g's are of class Cv is an immediate conse
quence of a well known theorem.* The rest of the lemma follows 
from the obvious relations 

(4) 

agi 

dy3-

agi 

dy3-

= àih (i = 1, 2, • • • , ») , 
i 

= ƒ<(<>, • • • , ( > ) , ( / = 1 , 2 , . . . , » - ! ) . 

For the jacobian of T, evaluated at the origin, turns out to be 
exactly/„(O, • • • , 0). 

LEMMA 3. Consider a Pfajfian co=]0* i Xidx* satisfying the 
following conditions : 
(A) The X's are of class O in the neighborhood of the origin. 
(B) None of the X's vanish at the origin. 
(C) The skew-symmetric determinant \dij\ does not vanish at the 
origin. 
Then there exists a non-singular transformation Xi = gi(yi, • • -, 3̂ 2̂ ) 
of the neighborhood of the origin into itself such that œ appears ex
pressed in terms of they1 s in the form é ^ E f i l 1 ^ » ^ ] , where the 
A's are functions of yi, • • • , y^k-i satisfying the following con
ditions : 
(a) The A { are of class O" 2 . 
(j3) None of the Ai vanish at the origin. 

* See G. A. Bliss, The solutions of differential equations of the first order as 
functions of their initial values, Annals of Mathematics, vol. 6 (1904-1905), 
pp. 49-68, especially p. 67. 
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(7) The skew-symmetric matrix (ca), where ci}=dAi/dyj 
—dAj/dji, is such that there exists a system of functions 
%i(yu * • • 1 3>2&-i) which satisfy the linear identities S i - T ^ o ' S ^ O 
and^tï'AÓ^l. 

PROOF. Consider the equations 

2k / dX' \ 
(5) £ ^ ( T 2 - ) ** Xi> (* - 1, 2, . - - , 2*). 

Since j «»-/| 5*̂ 0, we may solve for the derivatives, writing the 
result in the form dxi/dy2k=sfi(xi, • • • , #2*), where the ƒ's are 
of class O - 1 . On account of (5) and (B) it is seen that not all 
t h e / ' s vanish at the origin. I t is no loss of generality to assume 
f2k(0, • • • , 0 ) ^ 0 , since a preliminary linear transformation 
can always be applied, the effect of which is merely to inter
change indices in the desired manner. We now apply Lemma 2 
to the present system, taking n = 2k and *>=/* — 1. We proceed 
to show that the functions gi, as there defined, satisfy the con
ditions of the present lemma. 

In equations (5) replace dxj/dyw by dgj/dy2k- Multiply each 
equation bydgi/dyM and sum with respect toi. Since aa+aa = 0, 
the result is ^Xi(dgi/dy*k) = 0. Hence from (1) we see that 

(6) Y2k EE 0. 

We also have, of course, â ^ j t / ^ ^ O , so that (2) yields 

dYi _ dgi dgi 

dy2k i./—1 dy2k dyi 

and, since the g's satisfy (5), the right member is equal to 
^2,Xj(dgj/dyi)y which by (1) is precisely F». Hence we have the 
result tha t dYi/dy2k^ Yit or 

(7) Yi =* e^Ai, 

where Ai is a suitably chosen function of yit • • • , y^k-u but in
dependent of 3>2fc. From (6) and (7) we have 

2fc 2 f c - l 

co = ]C Y4y<-ev**[ ] £ A4yi\-

Now the g's are of class O " 1 by Lemma 2. Hence the F's and, 
therefore, the A's, are of class O " 2 by (1). By (7), (1), and (4), 
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we have 4<= Y i=YT+ix fi H** X h ( î * l , 2, • • • , 2 * - l ) , at 
the origin. Hence (/3) follows at once from (B). 

I t remains to show that the ^4's as defined above satisfy (C). 
I t follows from (3) that 

i»«i - i* . i •(!!"•• " ' ^ V o . 
\d(yh • • • , yu)/ 

Hence we have a unique set of functions £i, • • • , £2* satisfying 
the equations 

"NTrnxr 
1MUW 

bjt2k 

and 

2 & - 1 

2^ bi&j + bit2k%2k = 0 , 

2& \ 

dFy dF2* Tr , , 

dy2* dyi 

/dAi dAA 

(i - 1, 2, • • 

(since ô2fc,? 

0" - 1, 2, • • 

• , 24 - 1), 

= — bj,zk). 

• ,2k - 1 ) , 

2* - 1), 

on account of (6) and (7). After dividing through by ev^1 our 
system of 2k linear equations may, therefore, be written in the 
form, 

2 & - 1 2k-l 

3=1 j - i 

The coefficients now are independent of 3/2*. Furthermore 
J2A; = 0, as is easy to see from Cramers rule, since the odd 
order determinant | ci3-\ is skew-symmetric and therefore identi
cally zero. Hence condition (7) is fulfilled. 

LEMMA 4. Consider a Pfaffianœ===^fS[lXidxi satisfying the fol
lowing conditions: 
(A) The X's are of class C». 
(B) None of the X's vanish at the origin. 
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(C) The matrix (a»?) is such that there exists a system of functions, 
£»(#i, • • • , #2*-i), which satisfy the linear equations 

2 & - 1 2 & - 1 

3 = 1 3 = 1 

77zew tóere exists a non-singular transformation Xi = gi (y\, * • • , 
y2k~i) of the neighborhood of the origin into itself such that co 
appears in terms of the y's in the form ^ f l l 2 Yidyi+dy2k-u where 
the Yi are f unctions of yi, - • • , y2k-2 (independent of y2k-i) satis
fying the following conditions : 
(a) The Y's are of class O - 2 . 
(j3) None of the Y's vanish at the origin. 

PROOF. Consider the equations 

doc ' 
(8) — — = £<(*!, • • • , x2*-i), (i = 1, 2, • • • , 2k - 1). 

dy2k-i 

I t is clear that a t least one of the £'s does not vanish at the 
origin on account of (C). Without loss of generality we assume 
that £2&-i(0, •• - , 0 ) ^ 0 . I t is also clear that the £'s may be 
taken to be of class O - 1 . We can apply Lemma 2 to (8), taking 
fi=i;i,n = 2k — lfv =/x — 1. We show that the gi, as there defined, 
satisfy the conditions of the present lemma. 

For, on account of (8) and (C), we have 

,--i \oy2k-i/ y-i \oy2k-i/ 

Hence, referring back to (1), we have F2ft-.i=l, while (2) yields 
the result tha t 

dYi dYi dY2k-i «£J dgi dgi 
— — 2^ an 

ày2k-i dy2k-i dy{ /.i—i dyi dy2k-i 

-E[2«„(^-)l(^) = o. 
imml L *=i \dy2k-i/J \dyi/ 

This shows tha t the Y's are all independent of yu-i- I t remains 
to prove tha t conditions (a) and (j8) are satisfied. 

Condition (a) follows from (1) and the fact that, by Lemma 



193S-] A THEOREM OF FERAUD 129 

2, the g's are of class O" 1 . Condition (j8) follows from the fact 
that , by (1) and (4), Xt\ 0 = F<| o, (* = 1, 2, • • • , 2f t -2) . 

We are now ready to prove our main result. 

THEOREM. Consider a Pfaffian co =22f=i X%dxi satisfying the 
following conditions : 
(I) The X's are of class C4m+*>, (ƒ> ̂  0). 
(II) iVowe #ƒ the X's vanish at the origin. 
(III) The determinant \ a^\ does not vanish at the origin. 
Then there exists a non-singular transformation of coordinates, 
valid in the vicinity of the origin, which it leaves fixed, such that co 
appears in the form ]T)r«i y2idy2i~i+d(^2fszOto-i). This transfor
mation is of class Cp+l. 

PROOF. Applying Lemma 3, with k = m and fx=4m+p, we 
write o) in the form e^mÇ^j^^Xidxi), where the new X's are 
independent of x^m and in fact satisfy all the hypotheses of 
Lemma 4, with k=m and jit = 4m — 2+p. Hence, applying 
Lemma 4, we can further simplify co, which now appears in the 
form 

( 2 m - 2 \ 

y^ XidxA + ex2mdx2m-i. 
The new X's, by Lemma 4, satisfy all the hypotheses of Lemma 
3 (with k=m — l,jLt = 4(w — l)+p), except that we must verify 
that the new determinant | ai3'\ does not vanish. This, however, 
can easily be done with the help of (3) on account of the fact 
that the transformation in question is known to be non-singular. 
Hence we can successively apply Lemmas 3 and 4 again and as 
a result we have co in the form 

( 2m—4 \ 

/ \ XidXi J + eX2meX2m-2dX2m-Z + eX2mdX2m-l • 

The new X's are independent of x2m-3, • • • , #2m and are of class 
£4(m-2)+p. This process may obviously be continued until at the 
end of the mth. application of Lemmas 3 and 4 we get co in the 
form 

ex*exi - - - ex2mdxi + • • • + ex*™-2eX2mdx2m-z + ex*mdx2m-i. 

The transformation a t the last application of Lemma 4 is of 
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class Cp+1. The transformations at the previous steps are of 
higher class. Hence the compound transformation is of class 
Cp+1. Finally we make the additional transformation: 

yi = xi, y2 = e^e** • • • ex*m — 1, 

yz = #3, yi = ex*ex* • • • ex2m — 1, 

y2m-l = %2m-l, y 2m = e***» — 1 . 

This transformation, which obviously is analytic with jacobian 
equal to 1 at the origin, leaves the origin invariant and trans
forms œ into the form (y2 + l)dyi + • • • + 6>2m-2 +1)^2m-3 
+ (y2m + l)dy2m-i. This completes the proof. 

I t is scarcely necessary to add that, if (I) be replaced by the 
hypothesis that the X's be analytic, the transformation T 
furnishing the desired reduction of co will also be analytic. To 
see this it is only necessary to make slight obvious changes in 
the previous work, beginning with Lemma 2, where we take 
the ƒrs and consequently the g's as analytic. 

In the application to the reduction of the Pfaffian equations 
of dynamics to Hamiltonian form, the condition (II) is of no 
disadvantage. For the Pfaffian differential equations are un
altered if to each Xi a constant is added. Assuming then that 
(II) holds (for each value of t) the equations may be written in 
variational form as follows : 

where now, since the X's (and consequently T) depend in 
general periodically upon /, H is not necessarily equal to Ç, but 
rather, of course, 

^ I dxA 
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