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some C > 0 so tha t (1) is satisfied by y = l/a. Similarly, if 
N(t)~tfiS(t)±l, where /3>0 and S(t) is, as in the reference cited, 
a "slow" function, then (1) holds for every Y</3. If l/an is the 
nth prime number, then (1) holds for every Y < 1 since K(t) 
> Cty in virtue of the elementary inequalities of Tchebycheff. 
Thus it is not necessary to use the prime number theorem /3 = 1-, 
S(t)±1 = 1/log /, applied in the reference cited. Correspondingly, 
the present method enables us to prove (1) also for sequences 
for which N(t) is not ^Sit)*1. 
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PROOF OF THREE PROPOSITIONS OF PALEY 
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1. Introduction. In a letter to Fejér,* Paley stated three in­
teresting propositions concerning Fourier series of bounded and 
continuous functions whose Fourier coefficients satisfy the con­
ditions nan, nbn*z —K, K^O. The letter of Paley contains only 
a very brief sketch of the proof. After knowing Paley's results 
the author succeeded in developing complete proofs with vari­
ous improvements of the estimates, and even in extending them 
to a wider class of Fourier series of almost periodic functions. 
These extensions will be treated elsewhere. In the present note 
we prove the following three theorems. 

I t will be assumed throughout that f(x) is real-valued and 
periodic, of period 2x, and Lebesgue integrable over (—7r, 7T). 
Let 

00 

(1) f(x) ~ a0 + S (an cos nx + bn sin nx) 

be its Fourier series expansion and let 

(2) sn = sn(x) = a0 + X) (av c o s vx + bv sin vx) 

* This letter is reproduced in a note by Fejér, On a theorem of Paley} this 
Bulletin, vol. 40 (1934), pp. 469-475, especially pp. 474-475. It was communi­
cated to the author by Professor Fejér in September, 1933. 
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be its partial sums. We also assume that the Fourier coefficients 
anj bn satisfy the inequalities 

(3) nan ^ — K, nbn ^ — K, 

where K is a constant that is not negative. 

THEOREM A. Iff(x) is bounded and 

,A. sup | / ( * ) | = L, 
(4) 
then 

(5) \sn(x)\ Û5L + 6K. 

THEOREM B. Under the same conditions we have 

(6) | sn{x) \ S 5L + 8(KLy\ 

THEOREM C. If fix) is continuous and conditions (3) are satis­
fied, then its Fourier series (1) converges tof(x), uniformly for all x* 

2. Proof of Theorem A. The basis of the proof is the classical 
Fejér inequality, | <rn(x) | ^ L , for the nth. arithmetic means of the 
sequence j ^ W } , which being written explicitly reduces to 

(7) 
v=i\ n / 

#o + 23 ( 1 ) iflvcos vx + bP sin vx) ÛL, ( » ^ 1 ) . 

Using the same idea as in the note of Fejér referred to above, we 
apply (7) to the Fourier series of 2<j>{x) cos nx and 2\f/(x) sin nx 
where 

1 °° 
(8) 4>(x) = -{ƒ(*) + ƒ ( - x)} ~a0 + 23 a, cos vx, 

2 v=i 

1 °° 
(9) \l/(x) = ~{f(x) - ƒ ( - a)} ~ £ *> sin vx. 

2 F - l 

* Theorems A and C incorporate the two theorems in Paley's letter, while 
Theorem B corresponds to his lemma. Theorems A and C were discovered 
independently, and proved by a different method by Szâsz, Zur Konvergenz-
theorie der Fourierschen Reihen, Acta Mathematica, vol. 61 (1933), pp. 185-
201. Our estimate (5) is sharper than that of Szâsz, and there is no doubt 
that it is capable of further improvement. The interest of Theorems A and B 
lies in the fact that they furnish universal estimates for partial sums sn(x) of 
all functions of the class under consideration, in terms merely of L and K. 



140 M. FEKETE [February, 

For every n ^ 1 we have 

oo oo 

(10) 2<j>{x) cos nx ~ X) a» c o s (y ~~ n)x + X) av c o s (" + n)x) 
v=0 v=0 

(11) 2^(#) sin nx ~ ^2 bv cos {v — n)x — ^ bv cos (v + w)#. 

On applying (7) we derive 

(12) 

2^ I 1 ) a„ cos (n — *>)# 

In 

(13) 

4̂  / ? — A 
+ 2 j I 1 ] av cos (v — n)x 

* / » — A 
2^ 1 1 ) &„ cos {n — *>)# 

4̂  / v — A 
2^ 1 1 )&* cos (*> — w)# 

= n + i \ w / 

^ 2£, 

^ 2 i , 

whence, for x = 0, 

(14) 

(15) 

X»' ö '+ Z (2w ~~ *0«r 
r=l r->n+l 

£ "*» + E O - «Ok 

g 2«L, 

^ 2«£. 

Formula (14) being combined with (3), yields 

0 ^ è ("«» + JO + £ -^-—~ ("«» + # ) ^ 2»(£ + K). 
v=l v=*n+l V 

Now, again by (3), 

(16) X) vav cos *># = ]C ( ^ + -*0 I c o s vx I + ^ ]C I c o s ?# I 

S (2L+ 3K)n. 

In similar fashion we derive 

(17) £ vb, sin pa; ^ (2L + 3K)n. 
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On combining (7), (16), and (17), we immediately get (5). 

3. Proof of Theorem B. We start with the identity indicated 
by Paley, 

(18) 

where 

n<rn(x) — mam(x) 
sn(x) = 1- R(x)9 (1 ^ m < ri), 

n — m 

(19) <rn(x) = aQ + cos vx + bv sin vx), 

(20) R(x) = (n — m)"1 ^ (v — m)(av cos vx + bv sin i>x). 
y=m~|-l 

By (7) 

(21) 
| n<xn(x) — m(Tm{x) | (w + w)Z 

n — m n — m 

On applying (7) to the (n — m)th arithmetic means of the series 
(10) and (11) we have 

(22) 

(23) 

_ / n — v\ 
2^ M J av cos (n — v)x 

/ v — n\ 
+ 2^ ( 1 ) a * c o s (v — n)x 

_ / n — v\ 
2^ M J bv cos (n — *>)# 

/ v — n\ 
+ 2Lt ( 1 ) ^ c o s (v ~" w)# 

^ 2L, 

^ 2L, 

whence, for x = 0, 

(24) 

(25) 

2^ (v — w)a„ + X) (2^ — m — v)av 
'=m+l v=n-f-l 

n 2n—m 

2 J 0* ~~ w)6„ + ^ (2^ — m — v)bv 

^ 2Z(^ — w), 

^ 2£(« - w). 

Formula (24), in view of (3), yields 
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o s E (y - *»)(<*> + K/v) g Ê (" ~ *»)(*> + * » 

^ 2L + K 

Thus we have 

2n— m ( 2n—m \ 

^2 (p — m)av cos p# 
j / = m + l 

E (Ï; — w)(#„ + - K / P ) COS VX 

(26) + 22 (y — m) (K/v) cos vx 
p ^ r o + 1 

^ Ë ("-«)(* + */") + * Ë ("-»)/' 

( 2 n— m n \ 

2L + Ü: £ iA + x Ë V") 
and, similarly, 

n J 
^2 (y — 7w)6v sin Ï># 

(27) 
v=>m+\ 

( 2n—m n \ 

2L + K EIA + I I î/A 
j / = m + l v=m-f-l / 

w+1 v=m-|-l 

Taking into account the well known inequality 

Ei /"<iog- , (1 ^ a < 0 ) , 

we obtain an estimate for R(x), 

(28) | R(x) \ ^ 4L + 2K log (»(2« - m)nr*), (\ Sm <n). 

From (18), (21), (28) it results that, for 1 S m < n, 

n{2n — m) 
(29) sn(x) I ^ 4 + ) + 2iUog 

n — m J ni' 

We propose to show that (29) and (5) imply, for an arbitrary 
ô>0 , 

(30) | sn(x) | ^ 5L + 4ÇL/Ô + KS). 
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If this is shown to be true, then (6) of Theorem B follows at once, 
since always-

1 
(KL)1'2 S-(L/Ô + KÔ), 

with the equality sign (only) in case d = (L/K)112 and K>0. 
To derive (30) from (29), we observe that , unless 

1 
(31) n < - (2 + 8)(1 + e*)(e* - 1 - Ô)~\ 

the interval (2n(l+es)~1
1 2ft(2 + 8)~~1) contains at least one 

integer m. For such an m we have 

S a 1 
l + - < — < -(l + e8) <e\ 

2 m 2 
n + m 2 4 

= 1 + 2(n/m - I )" 1 < 1 + = 1 + - , 
n — m 6/2 6 

/ n\ /2ft \ 
log (ft(2ft — m)mr2) = log ( — 1 + log ( 1 ) 

< loge* + log*8 = 25, 
whence, by (29), 

|*»(*) | S 5L + 4(L/Ô + Ko). 

Suppose now that (31) holds; (30) follows immediately from (5) 
if 8 ^ 3 / 2 . Finally, if 0 < 8 < 3 / 2 , then, by the Cauchy-Schwarz 
inequality and Parseval's theorem, 

n 

I sn(x) I S I öo J + ]C I 0, c o s vx + bv sin vx \ 

S I «01 + (n £ («J + M)) £ (1 + (2«)l'2)£ 

g {l + (2 + 5)1/2(1 + S ^ ' V - 1 - 0)-1'2}L. 

But, if 0 < S < 3 / 2 , we have 

e5 < 3 + 48, 

16(1 + S)2 > 4(1 + «)(1 + e») > 2Ô2(1 + «)(1 + es)(es - 1 - 5)~' 

>ô*(2 + 8)(l + eS)(e*-l-Ô)-i, 

1 + (2 + S)1'2(l + e5)1 '2^5 - 1 - Ô)-1'2 < 5 + - , 
5 
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and again (30) follows. Thus (30) holds for all ô > 0 and the 
proof of Theorem B is now complete*. 

4. Proof of Theorem C. Theorem C is now easily derived from 
Theorem B. Since f(x) is uniformly continuous we have by 
Fejér's theorem, 

(32) max | f(x) — <rn(x) | = Mn —> 0 as n —» oo . 
X 

The Fourier coefficients of the function/(x) —an{x) are given by 

<n> Vav (n) Vbv 

av = > $v = ; ( 1 ^ P ^ « — 1), 
n n 

( w ) a(n) i f ^ \ 

OLV = ay, pv = ov, (v a n). 
Conditions (3) obviously imply analogous conditions 

vav ^ — K, vpv ^ — A. 

On applying Theorem B to the Fourier series of f(x) —<rn{x) we 
have 

I ^n(^) — <rn(x) I = X) ( — ](a* c o s ^ + bv sin p#) 
(33) l ^ i \ n / 

^ 5Mn + mMnyi\ 
a n d finally, 

| ƒ(*) ~ *n(*) | ^ | ƒ(*) - *«(*) | + | <T»(tf) - *»(*) | 

^ 6Mn + S^M») 1 ' 2 . 

This proves Theorem C and, at the same time, gives infor­
mation concerning the rapidity with which sn(x) tends to its 
limiting f unction ƒ (x). 

THE EINSTEIN INSTITUTE OF MATHEMATICS, 
HEBREW UNIVERSITY, JERUSALEM 

* Formula (30) is of the type given by Paley, | sn(x)| SKo-\-LMs (loc. cit., 
p. 474), but has the advantage of giving a simple expression for Ms. 


