A NOTE ON TAYLOR'S THEOREM

BY A. F. MOURSUND
Let the function $f(x)$ be such that $f^{(n)}(a) \equiv d^{n} f(x) / d x^{n}$ at $x=a$ exists; then, for $|h|$ sufficiently small, we can write
(1) $f(a+h)=f(a)+h f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\cdots+\frac{h^{n}}{n!} f^{(n)}(a)+w(a, h)$.

It is well known that $w(a, h)=o\left(h^{n}\right)$ as $h \rightarrow 0,{ }^{*}$ and the more precise result that $|w(a, h)| \leqq\left|h^{n}\right| v(a, h)$, where $v(a, h)$ is the least upper bound for $0<|t|<|h|$ of

$$
\left|\frac{f^{(n-1)}(a+t)-f^{(n-1)}(a)}{t}-f^{(n)}(a)\right|
$$

is given by S. Pollard. \dagger
In this note we are concerned primarily with the behavior, as $h \rightarrow 0$, of derivatives with respect to h of the function $w(a, h)$. The point a being fixed, we designate the i th such derivative, $i \geqq 0$, by $d^{i} w(a, h) / d h^{i}$. Our theorem, a generalization of Pollard's theorem, is given below.

Theorem. If $f(x)$ is such that $f^{(n)}(a)$ exists, then for $i=0,1$, $2, \cdots, n-1$, and $|h|$ sufficiently small

$$
\left|\frac{d^{i}}{d h^{i}} w(a, h)\right| \leqq \frac{\left|h^{n-i}\right|}{(n-i)!} v(a, h)
$$

Proof. Since

$$
\left.\frac{d^{i}}{d t^{i}} f(a+t) \equiv \frac{d^{i}}{d x^{i}} f(x)\right]_{x=a+t} \equiv f^{(i)}(a+t)
$$

[^0]we see, upon writing t for h in (1) and differentiating, that (i) for $i<n$,
$$
\frac{d^{i}}{d t^{i}} w(a, t)=o(1), \text { as } t \rightarrow 0
$$
which insures that for $|t|$ sufficiently small and $j=1,2, \cdots$, $n-1$,
$$
\int_{0}^{t} \frac{d^{j}}{d t^{j}} w(a, t) d t=\frac{d^{j-1}}{d t^{j-1}} w(a, t)
$$
and that (ii) for $|h|$ sufficiently small and $|t|<|h|$,
\[

$$
\begin{aligned}
\left|\frac{d^{n-1}}{d t^{n-1}} w(a, t)\right| & =\left|t\left[\frac{f^{(n-1)}(a+t)-f^{(n-1)}(a)}{t}-f^{(n)}(a)\right]\right| \\
& \leqq|t| v(a, h) .
\end{aligned}
$$
\]

We have then for $|h|$ sufficiently small

$$
\begin{aligned}
& \left|\frac{d^{i}}{d h^{i}} w(a, h)\right| \\
& \quad=\left|\int_{0}^{h} d t_{n-i-2} \int_{0}^{t_{n-i-2}} d t_{n-i-3} \cdots \int_{0}^{t_{1}} \frac{d^{n-1}}{d t^{n-1}} w(a, t) d t\right| \\
& \quad \leqq\left|\int_{0}^{h} d t_{n-i-2} \int_{0}^{t_{n-i-2}} d t_{n-i-3} \cdots \int_{0}^{t_{1}}\right| \frac{d^{n-1}}{d t^{n-1}} w(a, t)|d t| \\
& \quad \leqq \frac{\left|h^{n-i}\right|}{(n-i)!} v(a, h) .
\end{aligned}
$$

Since $v(a, h)=o(1)$ as $h \rightarrow 0$, it follows from our theorem that for $i=0,1,2, \cdots, n-1$,

$$
\frac{d^{i}}{d h^{i}} w(a, h)=o\left(h^{n-i}\right), \text { as } h \rightarrow 0 .^{*}
$$

The University of Oregon

[^1]
[^0]: * See E. W. Hobson, The Theory of Functions of a Real Variable, vol. 1, 3d ed., pp. 368-370. We use here the more restrictive of the two definitions given by Hobson for $f^{(n)}(x)$. The existence of $f^{(n)}(a)$ then insures the existence and continuity in an open interval containing a of all derivatives of lower order.
 \dagger S. Pollard, On the descriptive form of Taylor's theorem, Cambridge Philosophical Society Proceedings, vol. 23 (1926-27), pp. 383-385. Pollard's proof seems only to establish the less sharp result $|w(a, h)| \leqq n\left|h^{n}\right| v(a, h)$.

[^1]: * For $i>0$ the result given here can be obtained from that for $i=0$ by comparing the expansion analogous to (1) of $f^{(i)}(a+h)$ with the equation obtained by differentiating (1) i times.

