Theorem 4. If the boundary Γ of the plane bounded connected and simply connected domain γ contains an indecomposable continuum D, there is a prime end of γ which contains D.

Here, as in the development of Theorem 2, for each value of j the set $\Gamma=\sum \Gamma_{j i}$. Consequently $\sum \Gamma_{j i} \supset D$. If for each of these $\overline{c\left(\Gamma_{j i}\right) \cdot D} \supset D$, then the set $\sum \Gamma_{j i} \cdot D$ is nowhere dense in D and [$\Gamma_{j i}$] does not cover D. But as none of $\left[\Gamma_{j i}\right.$] can have $\overline{c\left(\Gamma_{j i}\right) \cdot D}$ $\$ D$ unless $D \cdot c\left(\Gamma_{j i}\right)=0$, in view of Lemma 4, there must for every value of j be one of $\left[\Gamma_{j i}\right.$] which contains D. The proof now follows lines almost identical with those of Theorem 2.

Northwestern University

PROJECTIVE DIFFERENTIAL GEOMETRY OF CURVES

BY L. R. WILCOX

In a fundamental paper* on the projective differential geometry of curves, L. Berzolari obtained canonical expansions representing a curve C immersed in a linear space S_{n} in a neighborhood of one of its points P_{0}. The vertices of the coordinate simplex yielding Berzolari's canonical form are covariantly related to the curve, while the unit point may be any point of the rational normal curve Γ which osculates C at P_{0}. It is the purpose of the present paper to define a covariant point on Γ which can be chosen as a unit point so as to produce final canonicalization of the power series expansions of Berzolari.

It will be observed that the usual methods of defining a point on Γ for the cases $n=2$ and $n=3$ depend on configurations \dagger that do not possess suitable analogs in n-space. Hence it appeared for some time that the problem called for different procedures in spaces of different dimensionality. Special devices

[^0]were found by S. B. Murray and the author* for the spaces S_{4} and S_{5}; however, like the methods used in the plane and in S_{3} these seem not to admit generalization. It is to be shown here that, with the help of a suitably chosen linear complex, the general problem for $n>3$ may be solved.

Local power series expansions representing an analytic curve C immersed in a linear space S_{n} of n dimensions ($n>3$) in a neighborhood of an ordinary point P_{0} may be written \dagger in the form,

$$
\begin{align*}
x_{0} & =1 \\
x_{i} & =x_{1}^{i}+a_{i} x_{1}^{n+3}+b_{i} x_{1}^{n+4}+\cdots, \quad(i=2, \cdots, n), \tag{1}
\end{align*}
$$

wherein x_{0}, \cdots, x_{n} are homogeneous projective point coordinates, and the coefficients a_{i}, b_{i}, etc. are complex numbers, a_{n-1} being zero and a_{n} different from zero. The equations of the osculating rational normal curve Γ of C at P_{0} are

$$
x_{i}=x_{1}{ }^{i}, \quad(i=0, \cdots, n)
$$

The vertices of the coordinate simplex will be denoted by P_{0}, \cdots, P_{n}, where P_{i} is the point for which

$$
x_{i}=1, \quad x_{j}=0, \quad(j=0, \cdots, n ; j \neq i)
$$

The point P_{n} is the intersection that is distinct from P_{0} of the curve Γ and the principal hyperplane \ddagger of C and Γ; the vertex $P_{i},(i=1, \cdots, n-1)$, is the intersection of the osculating space S_{n-i} of Γ at P_{n} and the osculating space S_{i} of C at P_{0}. The unit point $U(1, \cdots, 1)$ is any point on Γ distinct from the points P_{0} and P_{n}.

Homogeneous line coordinates $p_{i j}$ of the line joining points $X\left(x_{0}, \cdots, x_{n}\right)$ and $Y\left(y_{0}, \cdots, y_{n}\right)$ will be defined by

[^1]$$
p_{i j}=x_{i} y_{j}-x_{i} y_{i}, \quad(i, j=0, \cdots, n ; i<j) .
$$

The coordinates of the line $l_{h k}$ joining P_{h} and $P_{k}(h<k)$ are given by

$$
p_{i j}=\left\{\begin{array}{l}
1, \text { when } i=h \text { and } j=k, \\
0, \text { when } i \neq h \text { or } j \neq k .
\end{array}\right.
$$

In the totality of linear complexes in the ambient space S_{n} there is a two-parameter family containing all lines $l_{h k}$ except $l_{0, n}, l_{1, n-1}$, and $l_{3, n}$. The equation of this family is

$$
\begin{equation*}
\lambda p_{0, n}+\mu p_{1, n-1}+\nu p_{3, n}=0 \tag{2}
\end{equation*}
$$

wherein λ, μ, ν are homogeneous parameters. In the family (2) there is a unique complex having ($n+3$)-line contact with the tangent developable of the curve C at the line $l_{0,1}$. With the help of expansions (1) its equation is found to be

$$
\begin{align*}
(n-2)(n & -3) p_{0, n}-n(n-3) p_{1, n-1} \\
& -(n-2)(n+3) a_{n} p_{3, n}=0 \tag{3}
\end{align*}
$$

The locus of all lines of the complex (3) through the point P_{n} is a hyperplane π whose equation is

$$
(n-3) x_{0}-(n+3) a_{n} x_{3}=0
$$

If we demand that the unit point U shall lie in this hyperplane, we have

$$
a_{n}=\frac{n-3}{n+3}
$$

hence we obtain the following result.
An analytic curve C immersed in a linear space of n dimensions may be represented in a neighborhood of one of its ordinary points P_{0} by local power series expansions of the form (1), in which $a_{n}=(n-3) /(n+3)$. For this canonical form the unit point is one of the intersections distinct from P_{n} of the hyperplane π with the osculating rational normal curve of C at P_{0}.

University of Chicago

[^0]: * L. Berzolari, Sugli invarianti differenziali proiettivi delle curve di un iperspazio, Annali di Matematica, (2), vol. 26 (1897), pp. 1-58.
 \dagger E. P. Lane, Projective Differential Geometry of Curves and Surfaces, pp. 12-27.

[^1]: * See Murray, Curves in Four-Dimensional Space, Chicago master's dissertation, 1934, and Wilcox, Curves in Five-Dimensional Space, Chicago master's dissertation, 1933.
 \dagger Berzolari, loc. cit., p. 2. We shall say that P_{0} is an ordinary point of C in case (1) C is not hyperosculated at P_{0} by any of its linear osculants or by its osculating rational normal curve Γ, and (2) C and Γ have at P_{0} a principal plane not contained in their osculating hyperplane at P_{0}. For the definition of principal plane see Berzolari, loc. cit., p. 18.
 \ddagger Berzolari, loc. cit., p. 19.

