THEOREM 4. If the boundary Γ of the plane bounded connected and simply connected domain γ contains an indecomposable continuum D, there is a prime end of γ which contains D.

Here, as in the development of Theorem 2, for each value of j the set $\Gamma = \sum \Gamma_{ji}$. Consequently $\sum \Gamma_{ji} \supset D$. If for each of these $\overline{c(\Gamma_{ji}) \cdot D} \supset D$, then the set $\sum \Gamma_{ji} \cdot D$ is nowhere dense in D and $[\Gamma_{ji}]$ does not cover D. But as none of $[\Gamma_{ji}]$ can have $\overline{c(\Gamma_{ji}) \cdot D} \Rightarrow D$ unless $D \cdot c(\Gamma_{ji}) = 0$, in view of Lemma 4, there must for every value of j be one of $[\Gamma_{ji}]$ which contains D. The proof now follows lines almost identical with those of Theorem 2.

NORTHWESTERN UNIVERSITY

PROJECTIVE DIFFERENTIAL GEOMETRY OF CURVES

BY L. R. WILCOX

In a fundamental paper* on the projective differential geometry of curves, L. Berzolari obtained canonical expansions representing a curve C immersed in a linear space S_n in a neighborhood of one of its points P_0 . The vertices of the coordinate simplex yielding Berzolari's canonical form are covariantly related to the curve, while the unit point may be any point of the rational normal curve Γ which osculates C at P_0 . It is the purpose of the present paper to define a covariant point on Γ which can be chosen as a unit point so as to produce final canonicalization of the power series expansions of Berzolari.

It will be observed that the usual methods of defining a point on Γ for the cases n=2 and n=3 depend on configurations[†] that do not possess suitable analogs in *n*-space. Hence it appeared for some time that the problem called for different procedures in spaces of different dimensionality. Special devices

1935.]

^{*} L. Berzolari, Sugli invarianti differenziali proiettivi delle curve di un iperspazio, Annali di Matematica, (2), vol. 26 (1897), pp. 1-58.

[†] E. P. Lane, Projective Differential Geometry of Curves and Surfaces, pp. 12–27.

were found by S. B. Murray and the author* for the spaces S_4 and S_5 ; however, like the methods used in the plane and in S_3 these seem not to admit generalization. It is to be shown here that, with the help of a suitably chosen linear complex, the general problem for n > 3 may be solved.

Local power series expansions representing an analytic curve C immersed in a linear space S_n of n dimensions (n > 3) in a neighborhood of an ordinary point P_0 may be written[†] in the form,

(1)
$$\begin{aligned} x_0 &= 1, \\ x_i &= x_1^i + a_i x_1^{n+3} + b_i x_1^{n+4} + \cdots, \end{aligned} (i = 2, \cdots, n),$$

wherein x_0, \dots, x_n are homogeneous projective point coordinates, and the coefficients a_i, b_i , etc. are complex numbers, a_{n-1} being zero and a_n different from zero. The equations of the osculating rational normal curve Γ of C at P_0 are

$$x_i = x_1^i, \qquad (i = 0, \cdots, n).$$

The vertices of the coordinate simplex will be denoted by P_0, \dots, P_n , where P_i is the point for which

$$x_i = 1,$$
 $x_j = 0,$ $(j = 0, \dots, n; j \neq i).$

The point P_n is the intersection that is distinct from P_0 of the curve Γ and the principal hyperplane[‡] of C and Γ ; the vertex P_i , $(i=1, \cdots, n-1)$, is the intersection of the osculating space S_{n-i} of Γ at P_n and the osculating space S_i of C at P_0 . The unit point $U(1, \cdots, 1)$ is any point on Γ distinct from the points P_0 and P_n .

Homogeneous line coordinates p_{ij} of the line joining points $X(x_0, \dots, x_n)$ and $Y(y_0, \dots, y_n)$ will be defined by

‡ Berzolari, loc. cit., p. 19.

^{*} See Murray, *Curves in Four-Dimensional Space*, Chicago master's dissertation, 1934, and Wilcox, *Curves in Five-Dimensional Space*, Chicago master's dissertation, 1933.

[†] Berzolari, loc. cit., p. 2. We shall say that P_0 is an ordinary point of C in case (1) C is not hyperosculated at P_0 by any of its linear osculants or by its osculating rational normal curve Γ , and (2) C and Γ have at P_0 a principal plane not contained in their osculating hyperplane at P_0 . For the definition of principal plane see Berzolari, loc. cit., p. 18.

$$p_{ij} = x_i y_j - x_j y_i,$$
 $(i, j = 0, \cdots, n; i < j).$

The coordinates of the line l_{hk} joining P_h and P_k (h < k) are given by

$$p_{ij} = \begin{cases} 1, \text{ when } i = h \text{ and } j = k, \\ 0, \text{ when } i \neq h \text{ or } j \neq k. \end{cases}$$

In the totality of linear complexes in the ambient space S_n there is a two-parameter family containing all lines l_{hk} except $l_{0,n}$, $l_{1,n-1}$, and $l_{3,n}$. The equation of this family is

(2)
$$\lambda p_{0,n} + \mu p_{1,n-1} + \nu p_{3,n} = 0,$$

wherein λ , μ , ν are homogeneous parameters. In the family (2) there is a unique complex having (n+3)-line contact with the tangent developable of the curve C at the line $l_{0,1}$. With the help of expansions (1) its equation is found to be

(3)
$$(n-2)(n-3)p_{0,n} - n(n-3)p_{1,n-1} - (n-2)(n+3)a_np_{3,n} = 0$$

The locus of all lines of the complex (3) through the point P_n is a hyperplane π whose equation is

$$(n-3)x_0 - (n+3)a_nx_3 = 0.$$

If we demand that the unit point U shall lie in this hyperplane, we have

$$a_n=\frac{n-3}{n+3};$$

hence we obtain the following result.

An analytic curve C immersed in a linear space of n dimensions may be represented in a neighborhood of one of its ordinary points P_0 by local power series expansions of the form (1), in which $a_n = (n-3)/(n+3)$. For this canonical form the unit point is one of the intersections distinct from P_n of the hyperplane π with the osculating rational normal curve of C at P_0 .

UNIVERSITY OF CHICAGO

1935.]