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situation could easily be avoided by taking C and C' as unde
fined and defining K as C+C'. I t is doubtful, however, whether 
irredundancy of undefined ideas is an especially useful concept. 
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1. Introduction. I t is proposed to present in this paper the 
distributions of greatest variâtes, least variâtes, and intervals 
of variation, in samples of size N drawn, without replace
ment, from the population characterized by the frequency dis
tribution 

(liovx = 0, 1, 2, • • • , 6 , 
ƒ0) = < 

\0 elsewhere. 
This is a finite universe of discrete variâtes, distributed rec
tangularly. 

The distributions of various statistical parameters, in the case 
of samples from rectangular distributions, have been investi
gated by Rietzf and others,J but they have been concerned 
with continuous distributions. The two investigations most 
closely related to the contents of this paper are those of J. 
Neyman§ and E. S. Pearson, and of P. R. Rider.lf 

* Presented to the Society, December 27, 1934. 
t On a certain law of probability of Laplace, Proceedings of the International 

Mathematical Congress, Toronto (1924), vol. 2, pp. 795-799. 
Ï Philip Hall, The distribution of means for samples of size N drawn from a 

population in which the variate takes values between 0 and 1, all such values being 
equally probable, Biometrika, vol. 19 (1927), pp. 240-244. Allen T. Craig, On 
the distributions of certain statistics, American Journal of Mathematics, vol. 54 
(1932), pp. 353-366. 

§ On the use and interpretation of certain test criteria for purposes of statis
tical inference, Biometrika, vol. 20A (1928), pp. 175-240. 

11 On the distribution of the ratio of the mean to standard deviation in small 
samples from non-normal universes, Biometrika, vol. 21 (1929), pp. 124-143. 
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Neyman* and Pearson consider samples of n from a continu
ous, rectangular distribution of range w. Using W to represent 
the range in the sample, they find the distribution of W, 

(1) 4>(W) - *(» - 1) - ( 1 - — ). 

Rider f assumes an infinite rectangular population of discrete 
variâtes and considers the distribution of range in samples of 
four from a ten-class universe. He obtains the distribution, 

(2) p(W) = 0 .001 ( - 12W* + 120W2 - 2W + 20), 

and compares it with the distribution of Neyman and Pearson, 
evaluating (1) for w = 4 and w = 10. He notes that the distribu
tion of range and other statistical parameters, for the discrete 
universe, seem to differ little from those obtained previously for 
the corresponding continuous universe. I t will be interesting to 
note whether this statement needs to be qualified in the case of 
the finite universe under consideration. 

2. Greatest Variate, In a sample of size N, consider, first, the 
probability, p(N— 1), for a greatest variate of size N—l. Since 
the sample must contain the integers from 0 to N— 1, both in
clusive, 

(3) p(N - 1) = 

If any of the N numbers in this sample be replaced by the num
ber N, the resulting sequence will have the number N as its 
greatest variate. Corresponding to each sample having JV —1 
as the greatest variate are samples having the number N as 
greatest variate. This provides a convenient way of enumerating 
the possible samples which have N as a greatest variate, and 
we can write 

(4) p(N) = N-p(N - 1). 

Likewise, the samples with N+l as the greatest variate may be 
exhibited by replacing each of the numbers in the first-mentioned 

* Loc. cit., p. 210. 
t Loc. cit., pp. 136-137. 
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sample, in succession, by the number iV+1 and choosing the 
rest of the sample from the numbers less than N+1. Continu
ing this process, it is simple to get the remaining samples, in
cluding the cases where the greatest variate is &. We have 

(5) p(N + 1) = CN+1)2p(N - 1), 

and, in general, 

(6) p(N + k) = CN+ktk+1p(N - 1), 

(* = - 1, 0, • • • , b - N). 

Replacing p(N—l) in (6) by its value from (3), and replacing 
N+k by G, we find that the required distribution is 

(7) X O - % ^ 

where G may assume all integral values from iV—1 to b. This 
may be written more compactly as 

jV(G)(tf-i) 
(8) p(G) = —— 

(b + 1)<*> 

The moments of this distribution about the origin may be 
computed by summing Gnp{G) over the possible values of G, 
and, by ordinary methods, the moments about the mean may 
then be obtained. We find 

N(b + 1) 1 
(9) Ma = N + 1 N + 1 

and the variance, 

N(b + l ) 2 (N2 - N)b + (2N2 - N) 
(10) (To2 = 

(N + 2){N + l ) 2 (N + 2)(N + l ) 2 

I t is interesting to compare these results with those obtained 
from a continuous distribution. Consider the distribution with 
the probability function 

1 
0(a) = — , (0 ^ x ^ b+ 1). 

6 + 1 
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Then the probability that the greatest variate in a sample is 
between G and G+dG is K times the product of the probabilities 
of N— 1 members being less than G and one variate lying be
tween G and G+dG. Thus* 

r rG dx f-1 dG NGN~l 

(11) $(G)dG = K'\ = dG, 
Uo b+ l j 6 + 1 (b + l)N 

since 

Also 
ƒ. 

6+1 
$(G)dG = 1. 

0 

(12) I G$(G)dG = 
J n 

and 

(13) 

N + 1 

6+1 r iv(6 + i)n2 N(£ + i)2 
r*+1r N(b + in» 

(tf+2')(# + l)2 

Compare these three results with (8), (9), (10) above. 

3. Least Variate. This distribution is found by the same 
method as used for greatest variate. When the sample consists 
of the N greatest variâtes in the population, the smallest is 
b — N+1. I t is then apparent that the probability, r(6—-iV+1), 
of this least variate is given by 

(14) r(b-N+ 1) = — 
Cb+1,N 

Then, reasoning as before, 

(15) r(b - N) = N-r(b - N + 1), 

and, finally, 

r(b- N - *) = CN+kfk+l-r(b - N + 1) 
(16) 

__ N(N+ k)W~» 

(ft+!)<*> 

* See E. L. Dodd, Functions of measurement under a general law of error, 
Skandinavisk Aktuarietidskrift, 1922. 
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If L represents the least variate, then, replacing b — N — k by L, 

N(b - 1)^-» 
17 r(L) = —i -

(b + l)c*> 
Proceeding as before, we obtain the mean, 

b - N + 1 
(18) ML = ; 

N + 1 

and the second moment about the mean, 

N(b+ l ) 2 (N2 - N)b + (2N2 - N) 
(19) orL

2 = 
(N + 2)(N + l ) 2 (N + 2)(N + l )2 

It is not surprising that Mo + ML = b and <T(? =G£ > 

4. Interval of Variation. The least interval of variation, or 
range, occurs whenever the N numbers in the sample are con
secutive. The least number in the sample may be any of the 
integers 0, 1, 2, • • • , b — N+1. Then the probability, q(N — 1), 
of a range N — 1, is given by 

(20) q(N - 1) = - — L ( * - ^ + 2). 

Ranges of size N occur when the largest and smallest variâtes 
in the sample differ by N. If the smallest variate is a, the largest 
is a + N, and between the two must lie N — 2 of the N—1 num
bers which lie between a and a + N. So connected with a and 
a + N are N—1 samples. Furthermore, a may be chosen in 
(b — N+1) ways, since the greatest admissible value of a + N 
is b. Therefore 

/»TN (à- N+ l)CW-i,*-2 (b- N+ 1 ) ^ - 1 , i 
(21) q(N) = = 

Pursuing the same line of reasoning, we write the general term, 

/11\ /AT . L\ (b ~ N - k+ 1) CN+k-l,k+l 
(22) q(N + k) = ; 

Cb+l, N 
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which describes the distribution if k varies from —1 to b — N. 
If N+k is replaced by R, 

/ / %„N , _ (b — R + 1) Ci2_i,22_AT+l 

(23) g(tf) = , 

and, after obvious simplification, 

N(N - 1) . 
(24) g(U) = V

+ } [(J + 1)(R - 1)<^2> - R<*-»], 

where R may assume integral values from N— 1 to 6. Proceed
ing as before, we calculate 

(N - 1)(J + 1) N - 1 
25 MB - - + , 

N + 1 iV + 1 
and 

2(2V - 1)(J + l)2 2(N - 1)[(N - l)(i +1) + N] 
(26) CTB2 = 

(iV + 1)»(JV + 2) (N + l)2(iV + 2) 

If in the formulas derived by Neyman and Pearson (see (1) 
and reference cited), w is replaced by b + 1 , W by R, and » by JV, 
they become 

(27) 

2V(iV - l ) ^ - 2 / R \ 
4>(R) = — (1 ) 

(b + l)*"1 \ J + 1/ 

[(*> + l ) ^ - 2 - 2P»-1], 

(28) mean = 

(29) variance = 

(b + I)* 

N(N - 1) 

(b + l)f 

(iV - l)(ft + 1) 

iV+ 1 

2(JV - l)(ô + l)2 

(TV + 1)2(# + 2) 

and the similarity to (24), (25), (26) becomes more apparent. 
Also, replacing W by R in (2) and setting N equal to four and 

b equal to nine in (24) and (27), we have 
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1 
4(R) = ( - UR* + 120R*), 

1000 
(for continuous distribution), 

1 
(30) p(R) = ( - 12R* + 120R2 - 2R + 20), 

1000 
(for discrete variâtes and infinite classes), 

1 
q(R) = ( - R* + 13R2 - 32R + 20), 
* 420 

(for discrete variâtes and unit classes). 

The third distribution is quite different from the first two. This 
fact becomes more apparent upon examination of Table I 
below. If the distribution is of the type assumed in this paper, 
the true value for the mean range of samples of four is 6.6. 
Rider's distribution has a mean of 5.93, while that of Neyman-
Pearson has a mean of 6. Therefore, either of the latter, if ac
cepted as an estimate for the true mean, gives a result somewhat 
too small. 

5. Application. This work was suggested by the problem of 
sampling automobile license numbers, in states where letters 
are not combined with the numbers. I t was desired to estimate 
total registration by means of a small sample. If the greatest 
variate, G81 observed in a sample, is assumed to be equal to the 
mean of the greatest variâtes from all samples, we have 

N(b + 1) 1 
(31) Gs = MQ = — 
V N+ 1 N + 1 

Solving for b, we obtain as one estimate 

N 
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TABLE I.* Distribution of Ranges of Samples of Four 
from a Rectangular Universe. 

Range R 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

MR)dR 

.0005 

.0115 

.0388 

.0757 

.1150 

.1495 

.1720 

.1753 

.1522 

.0955 

.0140 

p(R) 

.0010 

.0126 

.0400 

.0770 

.1164 

.1510 

.1736 

.1770 

.1540 

.0974 
— 

«(IQ 

— 
— 
— 
.0333 

.0857 

.1429 

.1905 

.2143 

.2000 

.1333 

— 

J<f>(R)dR — probability, for a continuous universe, that range will fall in the 
given class interval. 

p(R) — probability of given range for discrete universe of 10 classes, each 
class having an infinite number of variâtes. 

q(R)= probability of given range for discrete universe of 10 classes, each 
class having a single variate. 

Similarly, the range in a sample, R81 may be used for a second 
estimate, giving 

N + 1 
(33) b = Rs - 2. 

N - 1 
CARNEGIE INSTITUTE OF TECHNOLOGY 

* The first part of this table was given by Rider, (Table XII, loc. cit., p. 
136). The last column has been added for the purpose of comparison. 


