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ON T H E LAW OF QUADRATIC RECIPROCITY* 

BY ALBERT WHITEMAN 

The following proof of the law of quadratic reciprocity, which 
depends upon a modified form of the Gaussian criterion, is 
believed to be new. 

According to the usual form of this criterion, if p is any in
teger not divisible by the odd prime q, then p is a quadratic 
residue or non-residue of q according as in the series 

p, 2p, 3p, • • • , (q - 1)^/2, 

the number of numbers whose least positive remainders (mod q) 
exceed q/2 is even or odd. But, if \p=fiq+ry q/2<r<q, then 
2\p=(2n~\-\)q-\-2r — q, and conversely. Hence we have the 
transformed criterion : p is a quadratic residue or non-residue of q 
according as the number of least positive odd remainders in the 
series : 

(1) 2p, 4p, 6p, • • • , (q - \)p (mod q) 

is even or odd.f 
In the following discussion p, q represent any two odd primes 

such that q >p. Let r denote any odd remainder of (1) such that 
p<r<q. Then, for a suitable X, (1 ̂ X ^ (q-1)/2), 

(2) 2X^ = r (mod q)} 

whence 

(3) (q + 1 - 2X)^ s p + q - r (mod q)9 

where p<p+q — r<q. 
Congruences (2) and (3) are identical only for 2X = (g + l ) / 2 , 

r=(p+q)/2. Hence the odd remainders of (1) that are greater 
than p may be arranged in pairs by means of (2) and (3) except 

* Presented to the Society, February 23, 1935. 
t For other proofs of the reciprocity law using this transformed criterion 

see a paper by Lange, Ein Elementarer Beweis des Reziprozitats-gesetzes, 
Berichte der Koeniglichen Sachsischen Gesellschaft, vol. 48 (1896), p. 629; 
vol. 49 (1897), p. 607; see also P. Bachmann, Niedere Zahlentheorie, Part 1, 
1902, pp. 256-261, and pp. 266-267. 
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when (q + l)/2 is even and (p+q)/2 is odd, that is, when p, q 
are each of the form 4n + 3. In this case there is one odd re
mainder that does not belong to such a pair. If we denote by a 
the number of odd remainders greater than p} it follows that a 
is even if at least one of the two primes py q is of the form 4n + 1 , 
and odd if both are of the form 4n + 3. Consequently 

(4) a= (p - l)(q - l ) /4 (mod 2). 

Now let b denote the number of those odd remainders in (1) 
that are less than p. Then (p/q) = ( — l)a + & . Also, if c denotes 
the number of least positive odd remainders in the series 

(5) 2q, 4g, 6g, • • • , (p - \)q (mod p), 

we have (q/p) = ( — l) c . Hence 

(6) (p/q)(q/p) = (~ iy+b+°. 

To complete the proof, we shall now show that the odd re
mainders in (1) that are less than p are identical with the odd 
remainders in (5), and hence that b = c. Let 

(7) 2\p s r (mod q), 

where now r is an odd remainder such that 0<r<p, and 
l ^ X ^ ( 2 - l ) / 2 . Hence 

2\p = (2M - l)q + r, 

where 0 < / z < ( £ + l ) / 2 . From this we obtain 

(8) (ƒ> + 1 - 2y)q s r (mod p). 

Conversely, from (8), where 1 ^fx^ (p — l)/2, we obtain (7) 
with 0 < \ < ( g + l ) / 2 . 

Hence, as stated above, the odd remainders in (1) that are 
less than p are identical with the odd remainders in (5), so that 
b = c. The theorem then follows from (4) and (6). 
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