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A GENERALIZATION OF HARMONIC 
FUNCTIONALS* 

BY F. G. DRESSEL 

1. Introduction. In a recent paper W. V. D. Hodge f showed 
that most of the elementary properties of harmonic functions 
could be extended to harmonic functionals; on the other hand, 
we can extend the notion of harmonic functionals so that most 
of these elementary properties persist in this larger class. The 
present paper presents such an extension, and properties of the 
functionals it contains. 

2. Generalized Harmonic Forms. Consider the (p— l)-form 

(1) 4> = Ail...ip_ldxii • • • dx*p-i, (i = 1, • • • , n), 

in which the elements concerned obey the usual laws, with the 
exception that the dx's obey the non-commutative law of multi
plication 

(2) dxidxi = — dxjdx\ 

Without loss of generality we assume that the summation in 
(1) is taken over all i for which i\< • • • <iv-\. If the ^4's have 
second partial derivatives which are continuous, then the form 
<j> is said to be regular. The properties of such forms have been 
discussed by Cartan.J 

If the coefficients A^.,. ip_x are symbols, we shall speak of (1) 
as a symbolic form. In the present paper we shall be concerned 
only with symbolic linear forms: 

a = aidx{, jÖ = fiidx1, • • • . 

The rules of combination for these are the same as for the forms 
of the type (1), except that the commutative law for the multi
plication of a symbolic and a non-symbolic form does not hold. 

* Presented to the Society, February 23, 1935. 
t W. V. D. Hodge, A Dirichlet problem for harmonic functionals, with ap

plication to analytic varieties, Proceedings of the London Mathematical Society, 
(2), vol. 36, part 4, pp. 257-303. 

J E. Cartan, Leçons sur les Invariants Intégraux, 1922, Chapter 7. 
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In particular we note that if a,-, @j are symbols and A is a func
tion, the products a»j3y = j8,-a», Aai are symbols; but aiA is a 
function, since a* has spent itself on the function A. Any form 
is said to be zero if all its coefficients are zero, and is indicated 
by writing <£ = 0. 

Let the multiplication of the form (1) by the symbolic linear 
form a = aidxl be indicated by <£<*, 

Bil...ipdxil - - - dx1*, 

TJ ( - 1) <*ikA%i\—ip> (il < ' ' ' < tp), 

fc-1 

where 

Denoting the adjoint of <£« by </>a, we have 

0 a = ]C ± Biv..ipdxip+i • • • da*», 

the + or — sign being chosen according as i\, • • • , in is an even 
or odd derangement of 1, • • • , n. Finally, let 4>a be multiplied 
by the symbolic form ]8 =fiidx\ and let the result be indicated by 

(4) A,"0. 

If 7 is a cycle of (p — 1) dimensions, we shall define the in
tegral fy<j> as an a/3-functional of y if the form (4) is zero. Also 
in such a case, we shall speak of <ƒ> as an a/3-form.* We observe 
that if ai=j3i = d/dx\ then <j>a is known in the literature as the 
covariant derivative of <j> ; and that if Ap*4> = 0, and <j>a is regular, 
0 is a harmonic form and / 7 0 a harmonic functional of 7. 

3. Properties of the afi-fortns. We now give a series of theo
rems which are generalizations of the theorems of harmonic 
forms. 

THEOREM 1. The Bit.. . ip defined by (3) satisfy the relations 

(5) £ ( - 1 ) *nB?v..ip+l = 0. 

(3) 

4>a = 

Biv..ip = 

* A more general functional could be obtained by taking a and 0 as any 
symbolic forms. 
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From the properties assigned to our symbolic forms, we see 
that the associative law holds, so that 

where aa = 0 by virtue of (2) ; hence the theorem is immediate 
since the left side of (5) is a coefficient of <£aa. 

THEOREM 2. If p — \ and <t> is an afi-fortn, then 

(6) i8iai0+ • • < + pnan(t> = 0. 

The proof is easily supplied. We remark that any function 
satisfying the relation (6) will be called an afi-îunction. 

THEOREM 3. If <j> is an a$-form, then the coefficients of <j>a are 
a/3-functions. 

Using the definition of 0 a , we have 

(7) Af$ = E ± ( E PijB^.^dx'Adx^i • .<• dx** = 0, 

and wish to show that 

(8) afijBiv..ip = 0 

for each set i\< • • - <ip. 
We shall make use of the notation B\... ip,ip+v to mean that 

B in which ir is missing from i\< • • • <ip and that ip+v is to 
be put into its natural order in i\< • • • <ip, a. minus or a plus 
sign being taken according as ip+v is taken over an odd or over 
an even number of i's. Note in (7), when finding the coefficient of 
dxirdxip+1 - - - dxin, where l^r^p, that besides the term 
/3irBix... ip, two types of terms can appear, those for which 
ip+v<ir and those for which ip+v>ir. Taking this into account, 
we can write, except perhaps for a sign, this coefficient in the 
form 

n—p 

PirBix...ip + (— 1) 2L Pip+vBii>->ip,ip+v> 

For an a/3-form the above symbol is zero, hence multiplying by 
air and summing with respect to r from 1 to p, we have 
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n—p p 

(9) (- i )PE«AB.v- , , = E / V . E ( - D «*X'-<,.w 
r = l t ;= l r = l 

where we have reversed the order of summation on the right 
hand side. If now iiv<iv+v<ikv+\, where kv<p, we can adjust 
the notation, so that Theorem 1 reads 

2-*i \ 1 / air-E>ii--'ipt ip+v T* aip+v^ii'"ip 
p+r—1 

r = l 

+ ± (- D^aX-*,. lp+, = 0. 
r==fcv4-l 

Using this in (9), we get 

p n—p 

2LJ airPir&i i"-ip
 = ~~ 2 1 / Pip+V

a ' j>+» * 1 ' ' ' * P > 
r = l t>—1 

which leads immediately to the theorem. 

4. Forms in Two Sets of Differentials. Turn now to the special 
case of Aix- • • i^dx^ • • • dx^dl;*1 • • • dfv-1, namely,* 

Z7 = ^dx*1 • • • dx^-ld^il • • • d^v-K 

Let r) = r)id%i be a linear symbolic form and multiply U by it. 
Then 

Ut = ( Z ( - l ) ' ' - 1 ^ ^ ^ 1 • • • dx^"ldx^+l • • • da^W*» • • • <*(•*». 

The following theorem will be found useful. 

THEOREM 4. If fiiA = rjiA (or if faA = —riiA) and if A is an 
a(3-function, then Uv is an a(3-fornt. 

We may write U^ in the form 

/ V n p 

Una = I X) aijVijAdx^ • • • dx** + Z Z (~ i)' -1 

• aihrn.Adxikdxil > • • dx^~ldx^+l • • • d#*p Jd^*1 • • • d ^ . 

* The d# and d£ satisfy the law (2) separately, but in the present paper we 
assume that dx is commutative with d%. With this assumption U can be looked 
on as a symbolic form with Ad£h • • • d£*p-1 as coefficients. 
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Forming the adjoint of the above with respect to the dx's, we 
have 

(Un)° = Z ± ( Z aiflifAdx^ • • • dx*» + E È (- 1)*^ 
\ j - i *-iH-i y - i 

• aiflijAdxWx***-1 - - • dxik~ldxih+1 • • • d#'» J d^1 • • • </(•'». 

Multiplying by /? gives 

V ^ i = Z + ( E ft. T Z «<,M"| dx*'dx<*" • • • da?*» 

+ E E PitaitfijAdx^dx**" • • • dx*» + Ê Z Z ( - l)*** 

PivrnjaihAdxivdxiidxir+1 • • • dxih~ldxik+1 • • • rf^)d{il • • -d£**\ 

If now j3^4 =rjiAy we find that A / t / , is equal to 

(10) Z ± ( Z Viv\ Z ft^y4 dx^dx****- • • da*» J d f i . . - dÇ**. 

The expression (10) has the opposite sign if j8*4 = — r ;^ . Thus 
if 4̂ satisfies the equation 

Piaii4 + • • • + PnOinA =* 0, 

£ƒ„ is an a/3-form. 
If Z7* is the adjoint of Uv with respect to the d£'s, we readily 

see from (10) that we have the following corollary. 

COROLLARY. If the conditions of Theorem 4 hold, then U* is an 
a(3-form. 

4. Special Cases. In what follows we refer to a real euclidean 
space of w-dimensions, with (#\ • • • , xn) as a system of rec
tangular cartesian axes. The case treated by Hodge is obtained 
by specializing a and j8 to be 

d 
(11) a » p = dW. 

da1 
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With this choice of a and j3, Theorem 2 takes the form of La
place's equation 

/ d2 d2\ 

W + - - - + 5 5 ) * - 0 , i"-x')' 
hence the name harmonic forms. With rj = (d/dÇ^d!-*, the A 
of Theorem 4 can be taken 

1 
A = > when n > 2, 

= log r, when n = 2, 

where r2 = S(x* — £*)2- If we take 

(12) 

a = dx\ 
dxl 

d 
0 = dsi + . 

dx1 

, - £ # + • • 

d 
. . -| dxn~l — dxn 

ox*1-1 

5 

then Theorem 2 takes the form of the parabolic equation 

/ d2 a2 d \ 

+ . . . + — U = o. 
\dxi2 dx2n-\ dxn/ 

Hence if a and ]8 are defined by (12), we shall speak of an afi-
form as a parabolic form, and Jy<f> as a parabolic functional. The 
A of Theorem 4 can be taken as 

A = 0-[(*l-Sl)2+ • • • +(xn-l-£n-l)2] /[4(*n-€n)] 
( ^ - ? n ) ( W ~ 1 ) / 2 

If a and j8 are defined by (11), with the exception that 
an=— d/dxn, then (6) of Theorem 2 takes the form of the 
hyperbolic equation, and we can refer to such «jS-forms as 
hyperbolic forms. 

5. Green's Theorem for Parabolic Functionals. If </> and \[/ are 
regular (p— l)-forms, Hodge has proved the following theorem 
of Green useful in the case of harmonic functionals: 
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THEOREM. If a and (3 are given Ô3; (11) and D is any domain in 
our space bounded by the contour 7, we have 

f(A/VW- f(A/V)'0= f *«•*- (V-4>.* 

We shall now prove a corresponding theorem applicable to 
the case of parabolic functionals. Let a and /3 be defined by (12) 
and let 

- - d d 
p = pidx1 = — dx1 + • • • H dxn~l + dxn\ 

dx1 dx"-1 

then our final theorem reads : 

THEOREM 5. If D is a region in our space bounded by the con
tour 7, and <j> and\f/ are regular (p-l)-forms, then 

f ( A ^ ) - * - f (Aƒ*)•* = f [*«•*]»- ( V * , 

where [i//a-<t>]n means that terms of \f/a(l> not containing a dxn are 
dropped. 

Let 

t = Civ..ip_ldx^ • • • dx**-*, 

<t> = Ai^.^^dx1*- - - • dx**-1. 

Making use of (3) and (7), we have 

( A , V ) . ^ = ( - l ) n ( p - 1 ) 

•E ± ( È Z (- O ^ t . . ^ ^ ) ^ " • • • <***•• 
Forming (&J<j>)"ip and subtracting, we obtain 

(V*)* - (A.^¥ = ( - Dn<î,_1)E ± ( 11 ( - D** 
(13) V ~ 4=1 

' [A * 1 • • • ipPij0LiiS' i\-'ip ~~ W1 • • • ip^iJPij^ ii'"ipl jdX * • • UX . 

* For proof see W. V. D. Hodge, loc. cit., p. 266. 
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Two distinct cases arise : 
Case 1. j8ty^j8w, 

A*' • fl.*.f** • - C*k -^ . S- Aij' . 

= Pij\Ai1...ipOLikKsi1. ..ip) ÛU'jbvWi* • •*pP*y *1 ' ' '*p ' * 

Case 2. j8^=/3w, 

A ii• • • ipPijaik^il-'ip W i • • • » p
a»*P*; »l• • • *p 

= aikV*'il'--ipft'ijAii>-ip) • 

A term from Case 1 multiplied by dx*1 • • • dx*n and integrated 
leaves terms of the following type to be integrated over y : 

(— 1) Ai
3
1...ipaikCi1...ipdx - - - dx J~ dx 3 • • • dx 

, & - 1 
— (— 1) Ci1...ipi3ijAi

3
l...ipdx • • • dx dx • • • dx ; 

whereas from Case 2, we get on integration but the one term 

v fc~i 
— (— 1) Civ..ipPijAi

J
v..ipdx • • • dx dx • • • dx . 

Thus if we integrate (13) over D and make use of the above re
sults, we see that the theorem follows. 

It is interesting to note that for n = 2, p = 1, Theorem 5 gives 

1 — r - — * H — 7 + — \ndx1dx2 
J D \Ldxf d#2J Ldxf dxzJ ) 

r / # <ty \ 
= I <l>)//dxi + ( ^ \// J d # 2 . 

• / 7 \ d # i dxi / 

This result is well known in the literature.* 

D U K E UNIVERSITY 

* Boundary value problems for the new functionals will be presented in a 

later article. 
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