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A NOTE ON T H E EQUILIBRIUM POINT OF T H E 
G R E E N ' S FUNCTION FOR AN ANNULUS 

DEBORAH M. HICKEY 

1. Introduction. In a previous paper* the motion of the equilib
rium point of the Green's function for a plane annular region 
was studied as the pole was shifted along a radius in the neigh
borhood of the geometric mean circle Co-t The expression for 
dr/dr0 on Co, r being the distance of the equilibrium point from 
the center of the circles, r0 that of the pole, is —Fro/Fr, where 

2 f 1 1 « ( - l ) m ^ 1 

RUlogR 8 hi Rm- 1 J ' 

£L8 ~i Rm + 1 J ' 

In these formulas 1 and R are the radii of the inner and outer 
circular boundaries of the region. I t was shown by an applica
tion of a theorem of Schlömilchf that Fro does not vanish on Co

in this article this result and others are obtained by a method 
which seems better adapted to the problem. § 

It is noticed that the function 

7T Z 

ƒ(*) = -: ; ;> a = logR} 

sin wz eaz — 1 

* D. M. Hickey, The equilibrium point of Green1 s f unction f or an annular 
region, Annals of Mathematics, vol. 30 (1929), pp. 373-383. 

t The Green's function for this region may be written in the form 

g(M, Mo) = log—— + [log R log r0 - log r log r0/R] 
MMo log R 

^ 1 cosm(0-0o)/ r ! , [Y^V 11 
- E £T r^<rm[rQ

m - rQ~m] + r~m\ ( — ) - nm \> . 

We take ^(r, r0)=dg/dr for r = r0 = Rl/2 and 0—0O = TT. 
t Vber einige unendliche Reihen, Zeitschrift fiir Mathematik und Physik, 

vol. 23 (1878), p. 132. 
§ The suggestion that the method of contour integration and the theory 

of residues might prove useful was given by A. J. Maria. 
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where R is a real number greater than 1, has the sum of residues 
53w-i(— l)mrn/(Rm— 1) within a suitably selected contour con
taining as singularities only the poles 1, 2, • • • , n of f(z). It 
turns out by an integration around a contour and certain limit
ing processes that an expression for Fro on Co is found which is a 
series of positive terms. The same method applied to a suitably 
chosen function f(z) yields for the value of Fr a series of nega
tive terms. These values show that dr/dr0 is positive on Co. By 
means of the preceding results it is proved that d2r/dr0

2 is nega
tive on Co.* 

2. The Evaluation of Fro and Fr on Co by Contour Integration. 
The contour Cn chosen for the evaluation of FrQ consists of the 
lines xn = n + l/2, yn= ±(2n + l)ir/a, semi-circular arcs that lie 
to the right of the imaginary axis of positive radius p<7r/(2a) 
and < 1 and centers ±2nnri/a, (m = 0, 1, • • • , n), and the 
straight line segments of the imaginary axis exterior to these 
arcs included between the upper and lower yn lines. The function 

7T Z 

ƒ(*) = -
sin TTZ eaz — 1 

is analytic inside and on Cn except at the poles z = 1, 2, • • • , n 
of 7r/sin7ns. Hence the value of the integral (l/2wi)fCnf(z)dz, 
where the contour Cn is traced in the counter-clockwise direc
tion, gives ^2 m=i( —l)mm/(e a m—l), the sum of the residues of 
f(z) inside Cw. 

Let Ln be the straight line segments on the imaginary axis, 
Kn the semi-circular arcs, and Sn the remaining part of Cn. Over 
Ln the integral can easily be put into the form 

J n—1 /» (2rair/a)+p yfiy \ /» 

2 „^o J (2(m-t-i)T/a)-p s m n iry 2 J ( 

(2nir/a)+p ydy 

,+i)T/a)-P sinh iry 2 J (2n+i)W« s m n ^y 

For the evaluation of the integral over the arc of Kn with center 
at 2nnri/a, (m^O), a power series development of ƒ(z) about 
this point is used. Evaluated, the integral gives 

7T2 m 

a2 sinh (2mT2/a) 

* It is evident that the corresponding results hold for any annulus. 
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where Pm(p) is a power series in p with constant term zero. 
Over the arc with center at the origin the value is found to be 
( —l / (2a) )+P 0 (p ) - Thus integration around Cn gives 

n /— l)mm 1 w—1 C ^(«H-DW»)—P ydy n ( \)mfn 1 n~1 /• (z(»»-+ 

m = l 6 a m 1 2 m=0 J (2m7r/a )+p Sinh 7T^ 

((2n+l)ir/o)-p y^/y } 

2TT2 J L W 

1 /» ((2n-f 

(1) + — 
2 J (2n7T/a)+-p sinh Try 2a 

a2 m=i m=i sinh (2mT2/a) m=3_n 2TT* J 5ll 

The value of (l/2iri)fcnf(z)dz is clearly the same for any posi
tive p less than both ir/(2a) and 1. Letting p approach zero in 
(1), we obtain 

n^ (__ \)rnm \ /»(2n+l)Wa ygy * (— i)mw i r 
ea- - 1 2 Jn ,n=i eam - 1 2 J 0 sinh Try 

2TT2 JL m 1 1 f 
+ f(z)dz. 

a) 2a 2iriJ sn 

a2
 m=\ sinh (2rmr2/a) 

Now let n become infinite. The left member of (2) has as 
limit the convergent series ^w=i (~" l ) m ^ / (^ a m "~ !)• The first 
term on the right approaches the definite integral 

1 r 

2 Jo 

ydy 

sinh iry 

which is known to have the value 1/8. The series approaches 

2TT2 * m 

a2
 m==i sinh (2m-K21 a) 

The integral over Sn has the limit zero. 
To prove this last statement consider the modulus of 

fsnf(z)dz. It can be shown* that over the entire curve Sn, 
| 1/sin wz\ and \l/(eaz—1)| are bounded independently of n. 

* That 11/sin -KZ | is bounded on Sn independently of n is proved essentially 
by Lindelof in Théorie des Résidus, 1905, p. 32, footnote. The statement for 

can be proved in the same manner. 
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Let M be the greater of these two bounds. Moreover, on the 
upper and lower yn lines 

sin irz 
< 

sinh((2n+1)7r2)/a) ' 

and on the right-hand boundary z = (n +1/2) +iy, 

1 
< 

1 

e " * — l I 0«(n+l/2)_j[ 

It then follows easily that 

Mk(2n + l ) 2 

ƒ ƒ(*)<& < 
2a L2 si sinh ((2» + l)w*/a) 

+ I 1 
12) _ 1J 3 ea(n+l/2) 

where k is a constant independent of n. This is sufficient to 
prove the statement. 

In the limit for n infinite, (2) gives 

1 1 " (— l)mm 

2a 8 m^i eam - 1 
m 

a2
 m„i sinh (2w7r2/a) 

The left side of (3), where a is replaced by log R, multiplied by 
— 2/R, is Fro. Thus Fro is positive. 

For the evaluation of Fr let 

sin 7T3 eaz+l 

be chosen for /(z). Let the contour of integration Cn consist of 
the lines xn — n + l/2, yn= ±2niri/a, semi-circular arcs to the 
right of the imaginary axis of radius p<w/(2a) and with their 
centers at the points ±(2rn+l)Ti/a, (m = 0, 1, • • * , ri), and 
the portions of the imaginary axis exterior to these arcs between 
the upper and lower yn lines. 

Applied to this function over the chosen contour, the method 
used above yields easily the result 

(4) T- + S ^ - 7 7 " -7 E 
2m + 1 

eam _|_ I a2 mwmQ 5 ^ ^ ((2W + 1 ) T T 2 / ^ ) 
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By use of (4) with log R = a, Fr can be written as 

2TT2 " (2m + 1) 

~ R(\ogR)2hi /(2m+ 1)TT2N 
sinh 

/{2m + 1)7T2\ 

V log R ) logR 

a series of negative terms. With these values for Fro and F r , we 
conclude that dr/dr0 = —Fro/Fr on Co is positive. 

3. The Sign of d2r/dr0
2 on C0. From dr/dr0 = — FrJFr, we cal

culate the second derivative 

d2r 
(5) — = Fr~* [2FrüFrFr,r - FrîFrr - Fr*Fr,.J. 

dr0
2 

From the general expressions for Fro and F r in terms of r, r0, 
and R, the following relations on Co are found to hold 

Froro = - i ? " 1 ' 2 / ^ , F„ = - 3R~^Frj Fror = - ^ ' V , , . 

A substitution of these values in (5) gives 

(6) - 4 = R-^FroFr2[Fro+Fr}. 

Since Fro and 7<V2 are positive, the sign of d2r/dr0
2 on Co is that 

of i<V0 + i<V. From the results of the preceding section we have 

2TT2 * ( - l)mm 

R(\ogR)2 
= 1 / W7T2 \ 

sinh ( ) 
Vlog R) 

This alternating series converges to a negative sum since its 
terms are in absolute value strictly decreasing to zero. This 
shows that d2r/dr0

2 is negative on Co. 
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