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SOME T H E O R E M S ON TENSOR D I F F E R E N T I A L 
INVARIANTS 

BY JACK LEVINE 

1. Introduction. In the theory of algebraic invariants there is 
a theorem which states that if an absolute invariant be written 
as the quotient of two relatively prime polynomials, then the 
numerator and denominator are relative invariants.* If we con
sider absolute scalar differential invariants of a metric (or affine) 
space, then it is possible to prove a similar theorem regarding 
them. In the course of the proof we give a new proof of the fact 
that in a relation of the form (2) the $ must be a power of 
the Jacobian of the coordinate transformation. (In the alge
braic theory the u) are of course constants.) This proof involves 
the use of the differential equations satisfied by the scalar, f In 
this proof it is not necessary to restrict B and </> to be poly
nomials in their arguments as is done in the usual proof of the 
corresponding theorem in the invariant theory. It is sufficient 
to assume that <f> possesses first derivatives with respect to the 
u) and that B(g) is an analytic function of e in the neighbor
hood of € = 0. We also extend the theorem to the case of tensor 
differential invariants of the form (5). 

2. Scalar Differential Invariants. We consider the differential 
invariants of a metric space Vn with a quadratic form gijdxldxK 
Let 

A( ... ^L.. dPgiJ' \ 
\ g i h dxk ' ' " ' dxk • • • dxl) 

be an absolute scalar invariant of Vn which we take to be ra
tional in its arguments. We can then write A in terms of the 
ga and their extensions gij,k-- -i, and we have 

Af N B{gij\ 0; gijtki; • • • ) 
A(ga; 0; gij>ki; . . . ) • = — - , 

Hgu; 0; gij,ki; • • • ) 

* See, for example, H. W. Turnbull, The Theory of Determinants, Matrices, 
and Invariants, p . 277. 

t T . Y. Thomas and A. D . Michal, Differential invariants of relative quadratic 
differential forms, Annals of Mathematics, vol. 28 (1927), p . 679. 
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where B and C are polynomials in the gij and their extensions. 
We may assume that B and C have no common factor. Now 

B(ga;-- ) Bdi,;--) 
(1) = y 

C(gij', • • * ) C(ga; ' ' ' ) 

under an arbitrary coordinate transformation x—>#, the barred 
g's being the g's in the (x) coordinate system. It is easily shown 
we must have* 

(2) Bfor,- • • ) =*(«ï)£(ft,;- ' ' ), 
(3) C(gij; • • • ) = <l>(ua

b)C(gij) • • • ) , 

where ul = dxa/dxb and 0 is a polynomial in the «'s. We now 
prove <t> is a power of | d#/d# | , thus showing B and C are relative 
scalars. 

Write (2) in the form 

B(z)4r* = B{g)> 

and consider the infinitesimal transformation 

X
i = x* + €$*(#). 

We have 

\ de /c==0 \duy€=s0 \ de /€==0 \du)J(s=0 dx> 

As 0 is a polynomial, so also is d<f>/duf, and on evaluating this 

last expression at e = 0, we obtain a set of constants k{, so that 

Proceeding then as in the paper by Thomas and Michal, page 
679, we obtain the differential equations satisfied by B in the 
form 

(4) Xl
8(p)B = k\B. 

Now for any function G we have f 

(X8i Xm)G = 6mXaG — dsXmG, 

* H. W. Turnbull, loc. cit. 
t Thomas and Michal, loc. cit., p. 663. 
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and, in particular, for B we would have 

(X8, Xm)B = ömX8B — ö8XmB = B(ômka — ôakm). 

But also 

(Xl, Xl
m)B = x[(kl

mB) - xlik'sB) = B(kl
mkl - Ùl) = 0, 

so that 

from which follows k^kô^ where k is a constant. Substituting 
in (4) we find that B is a relative scalar of weight k and* 
<t> = | dx/dx | *. Similar results hold for C also. As stated in §1 we 
can prove a generalization of this result which we state as fol
lows. 

THEOREM 1. Given a function 

( dgU dpgii \ 

\gi3'' dx*'"' ' ^ . . . ^ 

with the law of transformation 

*(*'; ' ' ' ; eJPg.\,) = * < " ö * ( ™ ••' dJ
V.gii.dx)> 

where <j> possesses first derivatives in the u's and B(g) is analytic 
in the neighborhood of e = 0. Then <f> is a power of the Jacobian and 
B is a relative scalar differential invariant. 

3. Tensor Differential Invariants. Consider the absolute ten
sor differential invariant with components of the form 

/ C N rr,a'"h Ui~-j(f>kï, gkl,mq'y ' ' ' ) 
(5) Ti...j = — , 

D(gki; • • • ) 

where the C/'s and D are polynomials (with no common factor) 
in their arguments. Corresponding to (1) in the scalar case we 
have 

Ui'''j(g)uk • • • ul D(g) Q(g, u) 
(6) = = y 

u'z;:?{g, u)ua
m---ui D>(g,u) p(g,u) 

* Thomas and Michal, loc. cit. 
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(P, Q having no common factor), where the primed U's and D 
represent the result of replacing the barred g's by their values 
in terms of the g's and u's in the expressions U---(g) and D(g). 
From (6) we see that Q is a factor of D and of Ui'.'.'.bjul • • • #{, 
and hence must be a function Q'{g)y so that 

(7) Ul..j(g)uk • • • ul = Qf(g)Vl.\.i(g, u), 

(8) D(g)=Q\g)R{g). 

In (7) put « / = « / ; then 

(9) £C:fo) - ewr . i fo ,* ) . 
Hence (?'(g) = const., since Z> and the U's have no common fac
tor. Since D(g) and Df(g, u) are of the same degree in the g's, 
it then follows from (6) that P(g, u)=P'(u), so that 

D(S) =<t>(u))D{g). 

Hence as proved in the previous section for B, we have shown 
that D is a relative scalar of weight k, and therefore U*Y.\) (ire the 
components of a relative tensor of weight k. We can also prove 
the following theorem. 

THEOREM 2. If the set of quantities 

i a . . .b i gki] - • • ; — — ) 
\ dxm • • . dxr/ 

have the transformation law 

Tv...w{gki; • • • )u8 • • • ut = <j>(ue)Ta...b\gki) - • ')uv - • • uW9 

then 0 is a power of \ dx/dx\ and the T's are components of a rela
tive tensor invariant, it being assumed that <j> possesses first deriva
tives in the u's, and T(g) are analytic in the neighborhood of e = 0. 

The proof is similar to that used for B of the previous sec
tion. Similar results to those obtained for metric scalar and ten
sor differential invariants hold for affine invariants. 
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