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no point of B. Let f(z) be analytic and bounded in G. A necessary 
and sufficient condition f or the existence of polynomials {pn(z)} 
which converge to f(z) in G so that (1) holds is that there exist a 
function analytic and bounded in Y and equal tof(z) in G. 

The proof of this theorem is much the same as for Theorem 
A taken together with the remark of §5 in the earlier paper and 
is therefore omitted. 

The conclusion of Theorem D simply means of course that 
f{z) shall be analytically extensible throughout T. 

U N I O N COLLEGE 

A GENERALIZED PARSEVAL'S RELATION 

BY E. S. QUADE 

A function </>(#) which is non-negative, convex, and satisfies 
the conditions 0(0) = 0 and (0(x)/x)—*oo as x—><*> will be called 
a Young's function. Given such a function 0(x), a second func
tion, $(x), with the same properties can be found such that 
Young's inequality, ab Ŝ 0(a) +yp(b), holds for every a, b ^ 0. The 
functions <fr(x) and \[s(x) are then said to be complementary in 
the sense of Young, f 

If x(t) is such that Ja<t>{\ x\ )dt exists, x{t) is said to belong to 
the space L^a, b). This space is not necessarily linear, t For 
this reason we denote by L<j?(a, b) the class of all functions #(/), 
a^t^by such that the product x{i)y{t) is integrable for every 
y{t)eLt(a, b). If we put 

x(t)y(i)dt\ 
„ . a I 

for all y{i) with 

P r s f H\y\)dt^ 1, 

then L / is a linear metric, and complete space.§ A function 

t W. H. Young, Proceedings Royal Society, (A), vol. 87 (1912), pp. 225-
229. 

t W. Orlicz, Über eine gewisse Klasse von Raurnen vom Typus B, Bulletin, 
Académie Polonaise, (A), Cracovie (1932). 

§ A. Zygmund, Trigonometrical Series, 1935, pp. 95-100. 
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x(t)eLf can be approximated by its Féjer polynomials ;f that 
is, given €>0 , there exists an iV0(e) such that 

where <Tn = an(t', x) is the nth (C, 1) mean of the Fourier series 
of x(t). Since an(t; x) is continuous, there exists a step function 
con(/) which is a linear combination of simple step functions such 
that \<Tn(t) x) — o)n(t) | S «for a^t^b. Then 

| | * ~ w n | |* ^ | | * — crn | |0 + ||<rn — «„H* 

I C b 

sup I [<rn(t) - <an(t)]y(t)dt 
y \J a 

f sup ƒ I y(t) | dt\ 

Se + e[<j>(l)(b- a) + l] = Me, 

where I f is independent of x(t). This implies that the set of 
simple step functions is a fundamental set in the space L / . 

In the following we take (0, 1) as the fundamental interval 
and {Kn(s, t)} to be a sequence of measurable kernels defined 
on the unit square. 

THEOREM 1. Necessary and sufficient conditions that 

J y{s)ds I Kn(s, t)x{t)dt —» I x(s)y(s)ds 
o J o J o 

/or e^r^ £air x{t)eLf1 y(s)eL^ are as follows. 
(1) If 8 = (a, b) and 7r = (a, /3) are a?ry subintervals of (0, 1), 

ds j i£*n(s, /)d/ —>meas (5-7r); 

il r 1 i 
(2) #„($,/)*(*)* 

II J o I 
where M is independent of n.% 

t A. Zygmund, loc. cit., p. 107 (14). 
% For analogous results in some more special cases we refer to J. C. Burhill, 

Strong and weak convergence of functions of general type, Proceedings London 
Mathematical Society, (2), vol. 28 (1928), pp. 493-500; Z. W. Birnbaum and 
W. Orlicz, Uber die Verallgemeinerung des Begriffes der zueinander konjugierten 
Potenzen, Studia Mathematica, vol. 3 (1931), pp. 1-67; W. Orlicz, loc. cit. 

^ M\\x\\t, 
* 
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Since the set of simple step functions is a fundamental set, 
the necessity of (1) is obvious. In order that the integral 

I y(s)ds I Kn(s, t)x(t)dt 
*J o J o 

exist for arbitrary y{s) e L / , 

Un{x) =• J Kn(s, t)x(t)dt 
J o 

must belong to Lft for arbitrary x(t) eLf and n. We wish to show 
that Un(x) is a linear operation on Lft to Lf. We need the follow
ing lemmas. 

LEMMA A. l i m ^ ^ d ^ l U ^ 0 implies \\ma,sym\)n^%n(t) = 0. 

Set yw(£) — a sign xw(0, where a > 0 , \[/(a) ^ 1. Then 

;y(/)ff»(/)<tt = I yn{t)xn(t)dt 
0 I I *̂  0 

= a I | *n(0 I dt-*0. 
J o 

But 

lim I | xw 

1 

(t) \ dt = 0 implies lim asymp xn(t) = 0. 

LEMMA B. lirrin^oojlxn||^ = 0 implies the existence in L* of a 
subsequence {xni{t)\ and an x{t) such that \xni{t)\ ^ \x(t)\ for 
every i=l, 2, 3, • • - , and almost all t. 

Let ll^nWll^-"^. Without loss of generality we may take each 
xn(t)^Q. Then there exists a subsequence {xni(t)} c {xn(t)} 
such that SZ=illx^ll* = ^> where M is a constant. This means 
thaty^L^w.-ffl converges in the space L / to a function x(t) eLf. 
Then 

I %ni(t) | = xni{t) ^ x(t). 

LEMMA C. lim asympn^00xw(/) = x(t) implies lim 



714 E. S. QUADE [October, 

Suppose the contrary. Then there exists a subsequence 
{#n,-(0} s u c n t n a t lini^0o||xw.||^< ||x||^. This means that 

up I xniy dt ^ | |#||^ which implies I | xniy \ dt ^ ||#||^ 
y l J o I J o sup 

for all i sufficiently large. Since lim asymp^ooXn.^) •=• x(t), there 
exists a subsequence xni(t)—*x(t) almost everywhere. Hence 
l^nXO^Wl ~H*(0:y(0| almost everywhere for each fixed y(t). 
By the Fatou Lemma we have 

lim I | xniy | dt ^ I | xy \ dt ^ I xydtl. 

Since this must hold for every y(t), we have 

lim U^nJI^ ^ sup lim I | xniy \ dt à ||ff||*> 

which means that lim»-^oo||#ni||*è||#||*, a contradiction. 
Consequently, by a general theorem of Banach, | Un(x) is a 

linear operation. Hence || f/w(x)||^^ikfn||x|^. But the sequence 

\ I y(s)dt I £"„($, t)x{i)dt\ > 

is bounded (for each fixed #(/) eL / ) for every y(s) e L / . This im
plies j | | £7n0*0||* = M(x) independently of n. Then,by the Banach-
Steinhaus theorem, 

II C l 

|tf»(*)|U = I Kn(s,t)x(t)dt 
II J 0 

^ M p ^, 

where M is independent of n. 
To prove the sufficiency we set 

/
Kn(s, i)dt = I Kn(s, t)wap(t)dt = wn(s), 

a ^ 0 

f S. Banach, Théorie des Opérations Linéaires, 1932, p. 87. 
J A. Zygmund, loc. cit., p. 99, 
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where wap(t) is the characteristic function of the interval (a, /3). 
From (1) we have 

ƒ* b /* b 

wn(s)ds —> I wa(3(s)ds. 
a J a 

Let 

0 J a "O 

Then if X= M\\wap\\i, and p^n/x = max (1, pWn/\), since 

P«„/x = ƒ ^f— | Wn(/)| j * ̂  1, 

we have f 

where the right-hand side of the inequality is independent of n. 
Hence from a general theorem on linear functionals,J we have 

/
y(s)wn(s)ds-+ I y(s)wap(s)ds 

o J o 

for arbitrary y(s)eL<f*. Now set 

£n(*0 = I ;y(s)<fc I Kn(s, t)x(t)dt. 
Jo Jo 

This gives a sequence of linear functionals defined on Lf. For 
every wap(s), 

gn(Wafi) - > g O a f l ) = I ^ O ) Wafi(s)ds . I ^0 
•^ 0 

Moreover, since § 

il r 1 

gnO) | ^ Py I # n 0 , t)x{t)dt 
\\J o 

£piM\\x\\t, 

t A. Zygmund, loc. cit., p. 97. 
t S. Banach, loc. cit., p. 123, Theorem 2. 
§ A. Zygmund, loc. cit., p. 97. 
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we see that the modulus of the functional gn(x) is ^ Mp' in
dependently of n, and we may again apply the theorem on func
t i o n a l used above to obtain the desired result. 

As a corollary of Theorem 1, we have the following theorem. 

THEOREM 2. Necessary and sufficient conditions that 

/
y(s)ds I Kn(s, t)x(t)dt-+ J y{s)x{s)ds 

o «^ o Jo 

for every pair y(s)eLp, x(s)eLp>, ( 1 < £ < ° ° ) , are: 

ds I Kn(s, i)dt —>meas (d-ir); 
a J a a I 1 /» 1 \v' \l/p' 

I Kn(s,t)x(t)dt\ ds) ^ M\\x\\p>. 
[For the case x(s) eL,y(s)eM=L«„ the theorem holds provided 

we replace in (1) the interval {a, b) by the arbitrary measurable 
set E. The proof for this case is essentially the same as that of 
Theorem 1.] 

THEOREM 3. Necessary and sufficient conditions^ that 

/
y(s)ds I Kn(s, t)x{t)dt —» I y(s)x(s)ds 

0 " 0 «J 0 

for every pair y(s)eL, x(t)eM are: 

(1) I ds I Kn(s, t)dt —>meas ô-E; 
J a "E 

(2) ess sup I | Kn(s, t)\dt ^ M. 
s Jo 

Except for the necessity of (2) the proof is exactly that of 
Theorem 1. As in Theorem 1 we have 

ess 
I f 1 

sup I Kn(s, f)x{t)dt 
s I J o 

^ M'\\x\ Af. 

t J. D. Tamarkin, Zentralblatt, vol. 10 (1935), pp. 349-350, in review of 
paper by I. Natanson, Bulletin, Société de Physique et Mathématique, Kazan, 
vol. 3 (1934). 
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Letting x(t)=e(t) be the characteristic function for the set Ey 

we have 

f Kn(s, 
J o 

ess sup I Kn(s> t)dt S M'. 

This impliesf that (2) holds. 
If, in Theorem 2, condition (2) were replaced by either 

a l / n 1 \P'/P \ 1 / P ' 

M \Kn(s,t)\Pd(\ ds) ÛM, 
(n= 1, 2, • • • ) • 

or 

( » = 1, 2, . • . ) , 

the conditions of Theorem 2 would be sufficient but no longer ne
cessary. For example, the Dirichlet kernel, Dn(s, t) =DW(/, —s), 
(where the fundamental interval is (0, 27r) and the functions 
are assumed periodic) does not satisfy either of these conditions 
but does satisfy those of Theorem 2. We note that for p^2> 
(2") implies (20 and for Kp^2, (2') implies {2"). 

THEOREM 4. Sufficient conditions that 

/
y(s)ds I Kn(s, t)x{t)dt —> I y(s)x(s)ds> 

o J o J o 

where x(s) eZ,/, y(s) eLf are : 

—>meas (ô-7r); 

(2) ess sup j | Kn(s, t)\dt ^ M, (n = 1, 2, « • • ); 
5 •/ 0 

(3) ess sup { | Kn(s, t)\ds ^ M, (n = 1, 2, • • • ) . 

f Saks and Tamarkin, Annals of Mathematics, vol. 34 (1933), p. 600. 
Theorem 2. 
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We set Unis) =fQKnis, t)xit)dt and consider 

Unis) r l ( Knis, *)> 

M 

Since 

Jo \ M ) x(t)dt. 

ess sup I | Kn(s, t) | dt ^ 1 
s J o 

and ^(0) = 0 , we have by Jensen's inequality 

,/!*»(*) I \ f / i r1 *»(*>o *w , i\ 
^ l — i n r = n I n~7r^ ) 

\ M | | * | | ^ / \ U o M \\%\\i> 1/ 
/ f i i *»(*,/) l I *(0 I . \ 

^ ^( I • IT—rr \dt J 

1 rl / I a ( / ) | \ , , 
S5J.*(JH7) | JC ,< ' , '>1*-

Consequently 

J. *wrs Ï ƒ. * ƒ. HW)'^(s'')U' 
l cl /I #Ml\ cl 

= ^r n V i r - ) * I *»(*,*) I <fc 
r1 /1 *(ol\ 

Jo \ \\x\\i> I 

We have thus shown that unis) =f0Knis, t)xit)dt takes #(/) e i / 
into wn(^) e L / for arbitrary n, and hence condition (2) of Theo
rem 1 follows as in the proof of the necessity in that theorem. 

BROWN UNIVERSITY 


