ON CONTINUED FRACTIONS OF THE FORM

$$1+\overset{\infty}{K}_{1}(b_{\nu}z/1)$$

BY H. S. WALL

1. *Introduction*. The principal object of this paper is to determine the region of convergence of the infinite continued fraction

(1)
$$1 + \overset{\infty}{K}_{1}(b_{\nu}z/1) = 1 + \frac{b_{1}z}{1} + \frac{b_{2}z}{1} + \cdots, \quad (b_{n} \neq 0),$$

when b_1 , b_2 , b_3 , \cdots are real or complex numbers such that for some $k \ge 1$

(2)
$$\lim_{m \to \infty} b_{nk+m} = \sigma_m, \qquad (m = 1, 2, 3, \cdots, k).$$

The results may be stated in terms of the numerators and denominators $u_{n,\lambda}$, $v_{n,\lambda}$ of the *n*th convergent of the continued fraction $1+K_{\nu=1}^{\infty}(\sigma_{\nu+\lambda}z/1)$, $(\sigma_{nk+m}=\sigma_m)$, as follows.

THEOREM 1. Let \dagger us write $G_k = v_{k-1,1}v_{k-1,2}\cdots v_{k-1,k}$ and $H_k = v_k + u_{k-1} - v_{k-1}$; and let us set

$$Z(z) = - (-z)^k \sigma_1 \sigma_2 \cdots \sigma_k / H_k^2.$$

Let R be an arbitrary bounded closed and connected region of the z plane containing the origin on the interior and which contains (within or upon the boundary) none of the zeros of the polynomials G_k , H_k , nor points z such that Z(z) is a real number $\leq -1/4$. Then (1) converges over R except at certain isolated points p_1, p_2, \cdots , p_{μ} , and uniformly over the region obtained from R by removing the interiors of small circles with centers $p_1, p_2, \cdots, p_{\mu}$. The limit is a non-rational function of z analytic over R except at p_1, p_2, \cdots , p_{μ} , which are poles.

The function Z(z) determines a transformation of the z plane into the Z plane and Z = Z(z). Except in the case $\sigma_1 \sigma_2 \cdots \sigma_k$ =0, the set of points in the z plane such that Z is real and

[†] We write $u_{n,0} = u_n$, and $v_{n,0} = v_n$.

 $\leq -1/4$ is a portion of a curve C_k to which corresponds under the transformation the real Z segment $(-\infty, -1/4)$. The curve C_k is a stelloid[†] or Holzmüller[‡] hyperbola in the plane of 1/z. In particular, C_1 is a straight line, and C_2 a circle in the plane of z.

In §2 we prove Theorem 1; §3 contains a discussion of the curves C_k ; and §4 contains examples and a discussion of the power series which corresponds to (1).

2. Proof of Theorem 1. If $N_n(z)/D_n(z)$ is the *n*th convergent of (1), there are k continued fractions

$$K_m = Z_0^m + \overset{\infty}{\underset{1}{k}} (Z_{\nu}^m/1), \qquad (m = 1, 2, \cdots, k),$$

with convergents $N_{\nu k+m-1}/D_{\nu k+m-1}$, $(\nu=0, 1, 2, 3, \cdots)$, and §

$$Z_{0}^{m} = \frac{N_{m-1,0}}{D_{m-1,0}},$$
(3)
$$Z_{1}^{m} = \frac{(-1)^{m-1}b_{1}b_{2}\cdots b_{m}z^{m}D_{k-1,m}}{D_{m-1,0}D_{k+m-1,0}},$$

$$Z_{n}^{m} = \frac{-(-z)^{k}b_{1}^{*}b_{2}^{*}\cdots b_{k}^{*}D_{k-1,(n-3)k+m}D_{k-1,(n-1)k+m}}{D_{2k-1,(n-3)k+m}D_{2k-1,(n-2)k+m}},$$

for $n \ge 3$, and where $b_i^* = b_{(n-2)k+m+i}$ and $N_{n,\lambda}/D_{n,\lambda}$ is the *n*th convergent of

(4)
$$1 + \frac{b_{1+\lambda z}}{1} + \frac{b_{2+\lambda z}}{1} + \cdots$$

By a known theorem, || if

....

(5)
$$\lim_{n \to \infty} Z_n^m = Z(z)$$

uniformly over a region R', where Z(z) is a continuous function having nowhere in R' a real value $\leq -1/4$, then there exists an index N such that if $n \geq N$, the continued fraction $K_{\nu=1}^{\infty}(Z_{\nu+n}^m/1)$ converges uniformly over R' to an analytic limit $F_n(z)$. Then if

[†] Fouret, Comptes Rendus, vol. 106 (1888).

[‡] Holzmüller, Einführung in die Theorie der isogonalen Verwandschaften, 1882, p. 170 and p. 203.

[§] Perron, Die Lehre von den Kettenbruchen, 1913, p. 200.

^{||} Ibid., p. 285.

 N'_n/D'_n is the *n*th convergent of K_m , the latter will converge over R' to the limit

(6)
$$\frac{N'_{n} + F_{n}N'_{n-1}}{D'_{n} + F_{n}D'_{n-1}},$$

provided the denominator in (6) is not $\equiv 0$. But if, as we now suppose, R' contains the origin on the interior, this is impossible because the denominator = 1 when z = 0. Hence K_m converges to a function which is analytic except for poles, and clearly converges uniformly in the region obtained from R' by removing the interiors of small circles having these poles as centers. Also, K_m converges uniformly in the vicinity of the origin. From this it follows† that if R' is connected, and if (2) holds for m = 1, 2, $3, \dots, k$ uniformly over R', and Z(z) is independent of m, then $K_1 \equiv K_2 \equiv \dots \equiv K_k \equiv P(z)$, where P(z) is the power series corresponding to (1), and hence (1) converges after the manner of K_m to the same value.

It remains to be shown that under the hypothesis (2), (5) holds over the region R described in the theorem, and that $Z(z) = -(-z)^k \sigma_1 \sigma_2 \cdots \sigma_k / H_k^2$. We have, if $\delta_n = nk + m$,

(7)
$$D_{2k-1,\delta_n} = D_{k-1,\delta_{n+k}} D_{k,\delta_n} + (N_{k-1,\delta_{n+k}} - D_{k-1,\delta_{n+k}}) D_{k-1,\delta_n},$$

and hence, if $D_{k-1,\delta_n+1}/D_{k-1,\delta_n} = 1 + \epsilon_n = 1/(1+\epsilon_n')$,

$$Z_n^m = \frac{-(-z)^k b_1^* b_2^* \cdots b_k^*}{\Delta_{n-3} \quad \Delta'_{n-2}},$$

where

 $\begin{aligned} \Delta_{n-3} &= D_{k,\delta_{n-3}} + N_{k-1,\delta_{n-2}} - D_{k-1,\delta_{n-2}} + \epsilon_{n-3} D_{k,\delta_{n-3}}, \\ \Delta'_{n-2} &= D_{k,\delta_{n-2}} + N_{k-1,\delta_{n-1}} - D_{k-1,\delta_{n-1}} + \epsilon'_{n-2} (N_{k-1,\delta_{n-1}} - D_{k-1,\delta_{n-1}}). \\ \text{By (2), } \lim_{n=\infty} \epsilon_n = \lim_{n=\infty} \epsilon'_n = 0, \lim_{n=\infty} N_{k,\delta_n} = u_{k,m}, \lim_{n=\infty} D_{k,\delta_n} = v_{k,m} \text{ uniformly over } R. \text{ Also} \end{aligned}$

 $v_{k,m} + u_{k-1,m} - v_{k-1,m} \equiv v_k + u_{k-1} - v_{k-1} \equiv H_k,$

for all $m \ge 1$. It now follows that over the region R

$$\lim_{n=\infty} Z_n^m = - (-z)^k \sigma_1 \sigma_2 \cdots \sigma_k / H_m^2, \qquad (m = 1, 2, \cdots, k),$$

uniformly, as was to be proved.

[†] Ibid., p. 342. The argument used there applies with slight modification to K_m .

In case $\sigma_1 \sigma_2 \cdots \sigma_k = 0$, it is clear that $Z(z) \equiv 0$, and therefore can never be real and $\leq -1/4$. In this case (5) holds uniformly over every bounded region from which the neighborhoods of the zeros of G_k , H_k have been excluded. It may happen that these neighborhoods need not be excluded. More generally, even if (2) fails to hold, we have the following theorem.

THEOREM 2. If for some integer $k \ge 1$ the functions \mathbb{Z}_n^m , $(m = 1, 2, \dots, k)$, defined in (3) converge uniformly to 0 for $n = \infty$ over every bounded region, then the continued fraction (1) represents a meromorphic function of z and converges except at the poles of that function.

When k=1 this reduces to the condition $\dagger \lim b_n = 0$ found by E. B. Van Vleck. In §4 we shall give examples illustrating this theorem in the cases k=3, 4.

3. Discussion of the Curves C_k . Put $p = (-1)^k \sigma_1 \sigma_2 \cdots \sigma_k$, and let $p \neq 0$. By C'_k we shall understand the set of points in the z plane which is the image of the real Z segment $(-1/4, -\infty)$ under the transformation

$$Z = - p z^k / H_k^2.$$

Then C'_k is a portion of a curve C_k which is the image of the negative half of the real Z axis under this transformation, and is a cut for the function represented by (1).

If (2) holds, then

(8)
$$\lim_{m \to \infty} b_{nq+m} = \sigma'_m, \qquad (m = 1, 2, 3, \cdots, q),$$

where q = 2k and $\sigma'_{m+k} = \sigma'_m = \sigma_m$. If we had started with the hypothesis (8), then instead of the function Z(z) we would have $Z'(z) = -p^2 z^q / H_q^2$; and

$$(9) G_q = G_k^2 H_k^q,$$

(10)
$$H_q = H_k^2 - 2pz^k,$$

(11)
$$Z'(z) = -\frac{1}{(2+1/Z(z))^2}$$

In fact, if we let $n = \infty$ in (7), we obtain the relation $v_{q-1,m} = v_{k-1,m}H_k$, from which (9) follows at once. From three relations analogous to (7) we obtain the identities

[†] Ibid., p. 345.

$$v_q = v_k^2 + v_{k-1}(u_k - v_k), \quad v_{q-1} = v_k v_{k-1} + v_{k-1}(u_{k-1} - v_{k-1}),$$

 $u_{q-1} = u_k v_{k-1} + u_{k-1}(u_{k-1} - v_{k-1}),$

and consequently $H_q = H_k^2 + 2(u_k v_{k-1} - u_{k-1} v_k) = H_k^2 - 2pz^k$, which is (10). Finally, on eliminating $-pz^k$ between the relations

$$Z = -pz^k/H_k^2$$
, $Z' = -\left[-\frac{pz^k}{(H_k^2 - 2pz^k)}\right]^2$,

we obtain (11).

It follows from (11) that C'_k is the same as C'_q ; and from (9) we see that the zeros of G_q are those of G_kH_k . When $p \neq 0$, the zeros of H_k and of H_q lie on the cut; and when p = 0, the zeros of H_q are the same as those of H_k by (10). Hence when k is odd in (2) we may turn to (8) instead and obtain precisely the same region of convergence of the continued fraction (1). There is no loss in generality in assuming k even in (2).

In order to identify the curves C_k and determine C'_k it will be convenient to replace z by 1/z' and study the corresponding curve E_k in the plane of z'=1/z, and the portion E'_k of E_k which corresponds to C'_k . If, as we now suppose, k is even, say = 2q, then H_k is a polynomial of degree q of the form $1 + \sum_{1}^{q} A_{\nu} z^{\nu}$. We find that

$$\frac{(-p)^{1/2}}{[Z(z)]^{1/2}} = z'^q + A_1 z'^{q-1} + \cdots + A_q.$$

As Z(z) ranges through real values $\leq 0, 1/(Z(z))^{1/2}$ ranges through pure imaginary values, z' over E_k , and z over C_k . As Z(z) ranges through real values from -1/4 to $-\infty$, $1/(Z(z))^{1/2}$ ranges through pure imaginary values from -2i to +2i, z' over E'_k , and z over C'_k . Set

$$p^{1/2} = \frac{G}{2} e^{i\phi}, \qquad A_{\nu} = a_{\nu}e^{i\alpha_{\nu}}, \qquad z' = re^{i\theta},$$
$$z'^{q} + A_{1}z'^{q-1} + \cdots + A_{q} = X + iY,$$

where ϕ is any one of the possible arguments of $p^{1/2}$; G, a_{ν} are real and positive, and α_{ν} , θ , r, X, Y are real. We have

1935.]

H. S. WALL

$$X = \sum_{\nu=0}^{q} a_{\nu} r^{q-\nu} \cos \left(\alpha_{\nu} + \overline{q-\nu} \theta \right),$$

$$Y = \sum_{\nu=0}^{q} a_{\nu} r^{q-\nu} \sin \left(\alpha_{\nu} + \overline{q-\nu} \theta \right),$$

 $(a_0=1, \alpha_0=0)$. Let t be real. Then E_k is given parametrically by the equations

 $X = t \cos \phi$, $Y = t \sin \phi$.

On eliminating t we find that E_k is the stelloid or Holzmüller hyperbola

(12)
$$X \sin \phi - Y \cos \phi = 0,$$

and that E'_k is that part of E_k for which

$$(13) X^2 + Y^2 \leq G^2.$$

If q=1 (k=2), E_2 is a straight line, and (13) is the interior of a circle with center on E_2 . The curve C'_2 is an arc of a circle, and E_4 is a rectangular hyperbola. In case q=2, C_4 and C'_4 can be determined by the following special method. First determine δ_1 , δ_2 by the conditions

(14)
$$A_1 \equiv \sigma_1 + \sigma_2 + \sigma_3 + \sigma_4 = 2(\delta_1 + \delta_2),$$
$$A_2 \equiv \sigma_1 \sigma_3 + \sigma_2 \sigma_4 = \delta_1^2 + \delta_2^2,$$

so that

$$\delta_{\nu} = \frac{A_1 + (-1)^{\nu} (8A_2 - A_1^2)^{1/2}}{4}, \quad (\nu = 1, 2), \quad 8 \,\delta_1 \delta_2 = A_1^2 - 4A_2.$$

If $\delta_1 \delta_2 = 0$, then $A_1^2 - 4A_2 = 0$. Hence if either A_1 or A_2 is zero, the other is also. If $\delta_1 \delta_2 \neq 0$, put

$$\begin{split} \Delta &= \frac{\sigma_1 \sigma_2 \sigma_3 \sigma_4}{(\delta_1 \delta_2)^2} \,, \\ Z_1 &= - \, \frac{(\delta_1 \delta_2)^2 z^4}{\left[1 + 2(\delta_1 + \delta_2) z + (\delta_1^2 + \delta_2^2) z^2 \right]^2} \end{split}$$

Then $Z = \Delta Z_1$. The function Z_1 is of the form of Z' in (11) (for the case k = 4), so that

$$Z_1 = -1/(2 + 1/Z_2)^2,$$

732

[October,

where $Z_2 = -\delta_1 \delta_2 z^2 / (1 + \delta_1 z + \delta_2 z)^2$. When $\delta_1 \delta_2 = A_1 = A_2 = 0$, it is easy to see that $Z = -\sigma_1 \sigma_2 \sigma_3 \sigma_4 z^4$; and when $\delta_1 \delta_2 = 0$, $A_1 A_2 \neq 0$, $Z = -\sigma_1 \sigma_2 \sigma_3 \sigma_4 z^4 / A_2^2 (z + 2/A_1)^4$. We find that there are four cases.

CASE 1. $\delta_1 \delta_2 = A_1 = A_2 = 0$. The curve C'_4 consists of four rays running from z_n to ∞ in the direction from 0 to z_n , where z_n , (n = 1, 2, 3, 4), are the four fourth roots of $1/(4\sigma_1\sigma_2\sigma_3\sigma_4)$. In this case $\sigma_1 \neq \sigma_3$ or else $\sigma_2 \neq \sigma_4$, so that the case k = 2 is not included.

CASE 2. $\delta_1 \delta_2 = 0$, $A_1 A_2 \neq 0$. In the plane of $z/(z+2/A_1)$ the cut consists of four rays as in Case 1 except that the four fourth roots of $A_2^2/(4\sigma_1\sigma_2\sigma_3\sigma_4)$ are the initial points of the rays. In the plane of z the cut consists of arcs of two circles. Here $\sigma_1 \neq \sigma_3$ or $\sigma_2 \neq \sigma_4$.

CASE 3. $\delta_1 \delta_2 \neq 0$, $\delta_1 + \delta_2 = A_1/2 \equiv 0$. In the plane of z^2 the cut is an arc of a circle. We may have $\sigma_1 = \sigma_3$, $\sigma_2 = \sigma_4$ if and only if $\sigma_1 = -\sigma_2$. Thus (2) may hold with k = 2. The cut consists of two rays running to ∞ in this degenerate case.

CASE 4. $\delta_1 \delta_2 \neq 0$, $\delta_1 + \delta_2 \neq 0$. We may set $\delta_1 + \delta_2 = 2\delta$, and apply (11) (for the case k=2) to the function $Z_2 \delta^2 / (\delta_1 \delta_2)$. We find that in the plane of $(2+1/(\delta z))^2$ the cut is an arc of a circle. If $\sigma_1 = \sigma_3$, $\sigma_2 = \sigma_4$, $\sigma_1 \neq -\sigma_2$, (2) holds with k=2, and the cut is an arc of a circle in the plane of z. If $\sigma_1 = \sigma_2 = \sigma_3 = \sigma_4$, (2) holds with k=1 and the cut is the ray running from $-1/(4\sigma_1)$ to ∞ in the direction from 0 to $-1/(4\sigma_1)$.

If the σ_n are real and positive it is easy to show that $\delta_1 \delta_2 \neq 0$, $\delta_1 + \delta_2 \neq 0$, so that Case 4 obtains. In this important case one may show that the cut is a portion of the negative half of the real z axis. The polynomial G_4 is

$$(1 + \sigma_1 z + \sigma_2 z)(1 + \sigma_2 z + \sigma_3 z)(1 + \sigma_3 z + \sigma_4 z)(1 + \sigma_4 z + \sigma_1 z).$$

4. *Examples and Applications*. The following examples have been selected for the purpose of bringing out interesting points which might otherwise be overlooked.

EXAMPLE 1. Let $b_{3n-2} = c_n \neq 0$, $\lim c_n = 0$, $b_{3n+2} = -b_{3n} = a \neq 0$. Here we have, with k = 3,

$$Z_n^1 = -\frac{z^3 a^2 c_n}{(1 + c_{n-1}z)(1 + c_n z)},$$

$$Z_n^2 = -\frac{z^3 a^2 c_n (1 + c_{n-1}z)(1 + c_{n+1}z)}{[1 + (c_n + c_{n-1})z][1 + (c_n + c_{n+1})z]}$$

H. S. WALL

$$Z_n^3 = -\frac{z^3 a^2 c_n}{(1+c_n z)(1+c_{n+1} z)}.$$

Since $\lim_{n=\infty} Z_n^m = 0$, (m = 1, 2, 3), uniformly over every bounded region, the continued fraction represents a meromorphic function of z by Theorem 2.

EXAMPLE 2. Let $b_{4n+1} = -b_{4n+2} = c_n > 0$, $\lim c_n = 0$, $b_{4n} = -b_{4n-1} = a > 0$. If $b_1 = 1/a_1$, $b_n = 1/(a_{n-1}a_n)$, $(n \ge 2)$, then $a_{2n+1} > 0$. Since $\sum a_{2n+1}$ diverges, it follows from the work of Hamburger† that the continued fraction converges except upon the real axis. To prove that it represents a meromorphic function‡ it is but necessary to note§ that when k = 4

$$Z_n^{\ 1} = -\frac{z^4 a^2 c_{n-1} c_{n-2}}{(1 - a c_{n-2} z^2)(1 - a c_{n-1} z^2)},$$

so that $\lim Z_n^1 = 0$ uniformly over every bounded region, and therefore K_1 represents a meromorphic function.

EXAMPLE 3. If $\limsup |b_n| < g$, $\lim_{n \to \infty} b_n b_{n+1} = 0$, we may show that (1) represents a function which is analytic except for poles in the region $|| |z| \le 1/(2g)$. In fact, if k=2, $\lim_{n \to \infty} Z_n^m$ = 0, (m=1, 2), uniformly over this region inasmuch as the polynomials $D_{3,2n+m} = 1 + (b_{2n+m+2} + b_{2n+m+3})z$ have no zeros in this region if *n* is sufficiently large; and $\lim_{n \to \infty} b_1^* b_2^* = 0$.

EXAMPLE 4. According to Theorem 1, the real segment $(1, \infty)$ is to be excluded from the region of convergence of the continued fraction (1) if the *b*'s have the values $b_1 = 1/2$, $b_2 = -1/2$, $b_{2n} = -1/(2(1 + [n-1]^p/n^p))$, $b_{2n+1} = -1/(2(1 + [n+1]^p/n^p))$. One may show that this continued fraction converges or diverges at z = 1 (a point on this segment) according as p is >1 or ≤ 1 . In fact, when z = 1, the *n*th convergent is

734

[October,

[†] Mathematische Annalen, vol. 82, pp. 120-187.

[‡] See this Bulletin, vol. 39 (1933), pp. 946–952, in which another example is given to show that (1) may represent a meromorphic function when the b_n are real and $b_{2n}b_{2n+1}>0$, lim $\sup|b_n|>0$. In that example convergence was established except at the poles of the function, whereas here the question of convergence at points on the real axis is not considered.

[§] The other Z_n^m , (m=2, 3, 4), are not all so simple in character.

^{||} If the condition $\lim b_n b_{n+1} = 0$ is dropped, the same holds in the region $|z| \leq 1/(4g)$ (see Perron, loc. cit., p. 343).

$$\frac{1}{1^{p}} + \frac{1}{2^{p}} + \cdots + \frac{1}{[n/2]^{p}}$$

when *n* is even and

$$\frac{1}{1^{p}} + \frac{1}{2^{p}} + \dots + \frac{1}{[(n-1)/2]^{p}} + \frac{1}{2[(n-1)/2]^{p}}$$

when n is odd.

As is well known, (1) has a unique corresponding power series $P(z) = \sum c_r z^r$, $(c_0 = 1)$, from which (1) may be obtained by a repeated division process. If a given power series P(z) has a corresponding continued fraction of the form (1), it is said to be *semi-normal.*[†] When convergent, the continued fraction furnishes a method for summing the power series. Let $P'(z) = \sum_{\nu=0}^{\infty} c_{1+\nu} Z^{\nu}$ be semi-normal with corresponding continued fraction $c_1 + K(b'_{\nu} z/1)$. Then if (1) converges to f(z) when (1) corresponds to P(z), it is important to know conditions under which $c_1 + K(b'_{\nu} z/1)$ converges to the value (f(z) - 1)/z.

It is well known that if (1) converges to f(z), then when $c_1+K(b'_{\nu}z/1)$ converges it must have the value (f(z)-1)/z. This follows from the fact that the even convergents of $1+c_1z+zK(b'_{\nu}z/1)$ are the same as the odd convergents of (1).‡

The numbers b_{ν} and b'_{ν} are related as follows.§ Set $a_1 = 1/b_1$, $a'_1 = 1/b'_1$, $a_n = 1/(b_n a_{n-1})$, $a'_n = 1/(b'_n a'_{n-1})$, (n > 1). Then if $h_n = a_1 + a_3 + \cdots + a_{2n+1}$,

$$a'_{2n} = a_{2n+1}/(h_n h_{n-1}), \qquad a'_{2n+1} = a_{2n+2}h_n^2.$$

If (2) holds with k even (say = 2q), then it is not difficult to show that when the b_n are real and

(15)
$$\lim_{n=\infty} (b_{nk+m}/b_{nk+m+1}) = r_m > 0, \qquad (m = 1, 2, 3, \cdots, k),$$

we must also have

(16)
$$\lim_{n=\infty} (b'_{nk+m}/b'_{nk+m+1}) = r'_m > 0, \quad (m = 1, 2, 3, \cdots, k),$$

1935.]

[†] Perron, loc. cit., p. 304.

[‡] Perron, loc. cit., p. 447.

[§] Transactions of this Society, vol. 31 (1929), pp. 102-103.

H. S. WALL

and

(17)
$$\lim_{m \to \infty} b'_{nk+m} = \sigma'_{m}, \qquad (m = 1, 2, 3, \cdots, k).$$

Hence if Theorem 1 is applicable to the continued fraction corresponding to P(z) it is also applicable to the continued fraction corresponding to P'(z) provided P(z) has real coefficients and (15) holds. From (16), (17) it then follows at once that Theorem 1 can be in turn applied to the continued fraction corresponding to $P''(z) = \sum_{\nu=0}^{\infty} c_{2+\nu} z^{\nu}$, provided the latter is semi-normal, etc. It is easy to conclude from the fact that two successive continued fractions obtained in this way have an infinite number of convergents in common that the function Z(z) of Theorem 1 is the same for all these continued fractions. We shall summarize the result in the following theorem.

THEOREM 3. If $P(z) = 1 + c_1 z + c_2 z^2 + \cdots$ is a semi-normal power series with real coefficients and corresponding continued fraction (1) such that for k = 2q equations (2) and (15) hold, and if $L = c_1 + K(b_y' z/1)$ is the corresponding continued fraction for $P'(z) = c_1 + c_2 z + c_3 z^2 + \cdots$ (supposed semi-normal), then (1) and 1 + zL converge to one and the same function f(z) over the region R described in Theorem 1. If $P^{(n)}(z) = \sum_{\nu=0}^{\infty} c_{n+\nu} z^{\nu}$ is seminormal with corresponding continued fraction $c_n + K(b_{\nu}^{(n)} z/1)$, $(n = 1, 2, 3, \cdots, r)$, then all the continued fractions $1 + c_1 z$ $+ \cdots + c_n z^n + z^n K(b_{\nu}^{(n)} z/1)$, $(n = 1, 2, 3, \cdots, r)$, converge over R to f(z).

The continued fractions are precisely the continued fractions of "type 1" of a Padé table,[†] whose convergents are "stairlike" files of approximants beginning upon the horizontal side of the table. One can show that when E(z), the reciprocal of P(z), and the series $E^{(n)}(z)$ obtained by removing from E(z)the first *n* terms and the factor z^n , $(n = 1, 2, 3, \cdots)$, are seminormal, then under the hypothesis of Theorem 3 the continued fractions corresponding to stairlike files of approximants beginning on the vertical side of the table also converge over Rto f(z).

Northwestern University

736

[†] Perron, loc. cit., pp. 447-448.