A THEOREM ON HIGHER CONGRUENCES*

BY LEONARD CARLITZ

1. Introduction. Let $\mathfrak{D}=\mathfrak{D}\left(x, p^{n}\right)$ denote the totality of polynomials in an indeterminate x with coefficients in a Galois field $G F\left(p^{n}\right)$ of order p^{n}. Consider the congruence

$$
\begin{equation*}
t^{p^{n}}-t \equiv A \quad(\bmod P) \tag{1}
\end{equation*}
$$

where A and P are in \mathfrak{D}, and P is irreducible of degree k, say. The sum

$$
A+A^{p^{n}}+\cdots+A^{p^{n(k-1)}}
$$

is congruent $(\bmod P)$ to a quantity in $G F\left(p^{n}\right)$; we denote this residue by $\rho(A)$. It is easily seen that the congruence (1) is solvable in \mathfrak{D} if and only if $\rho(A)=0$. A better condition is furnished by the following theorem.

Theorem. If we put

$$
\begin{align*}
P & =x^{k}+c_{1} x^{k-1}+\cdots+c_{k} \tag{2}\\
P^{\prime} & =k x^{k-1}+(k-1) c_{1} x^{k-2}+\cdots+c_{k-1}
\end{align*}
$$

where c_{j} is in $G F\left(p^{n}\right)$, then the congruence (1) is solvable in \mathfrak{D} if and only if $P^{\prime} A$ is congruent $(\bmod P)$ to a polynomial of degree $<k-1$. More generally, if

$$
P^{\prime} A \equiv b_{0} x^{k-1}+\cdots+b_{k-1} \quad(\bmod P), \quad\left(b_{j} \text { in } G F\left(p^{n}\right)\right)
$$

then $\rho(A)=b_{0}$.
In this note we give a new and direct proof of this theorem. \dagger
2. Proof of the Theorem. For arbitrary $A(\bmod P)$ we construct the polynomial

$$
f(t) \equiv(t-A)\left(t-A^{p^{n}}\right) \cdots\left(t-A^{p^{n(k-1)}}\right) \quad(\bmod P)
$$

[^0]in which the coefficient of t^{k-1} is evidently $-\rho(A)$. For our purposes it will be convenient to make use of an alternative definition of $f(t)$. Let x denote a root of $P=0$; then x defines the $G F\left(p^{n k}\right)$. Then $A=A(x)$ is an element of the enlarged Galois field; $f(t)$ is evidently the unique polynomial, with leading coefficient $=1$, having the roots $A^{p^{n i}}$. Clearly all the coefficients of $f(t)$ lie in $G F\left(p^{n}\right)$. To calculate them we proceed as follows. Let
\[

$$
\begin{equation*}
x^{i} A \equiv \sum_{j=0}^{k-1} a_{i j} x^{j} \quad(\bmod P) \tag{3}
\end{equation*}
$$

\]

where $a_{i j},(i, j=0, \cdots, k-1)$, are in $G F\left(p^{n}\right)$. But the equations (3) evidently imply the following representation of $f(t)$ as a determinant:

$$
f(t)=(-1)^{k}\left|a_{i j}-\delta_{i j} t\right|
$$

so that by the remark at the beginning of this section

$$
\begin{equation*}
\rho(A)=\sum_{i=0}^{k-1} a_{i i} \tag{4}
\end{equation*}
$$

On the other hand, making use of (2) and (3),

$$
\begin{aligned}
& P^{\prime} A=\sum_{i=1}^{k} i c_{k-i} x^{i-1} A \\
& \equiv \sum_{i=1}^{k} i c_{k-i} \sum_{j=0}^{k-1} a_{i-1, j} x^{i} \quad\left(c_{0}=1\right) \\
&
\end{aligned}
$$

so that the coefficient of x^{k-1} is

$$
\begin{equation*}
b_{0}=\sum_{i=1}^{k} i c_{k-1} a_{i-1, k-1} \tag{5}
\end{equation*}
$$

Note next that (3) implies

$$
\begin{aligned}
x^{i+1} A & \equiv \sum_{j=0}^{k-1} a_{i j} x^{j+1} \quad(\bmod P) \\
& \equiv \sum_{j=0}^{k-2} a_{i j} x^{j+1}-\sum_{j=0}^{k-1} a_{i, k-1} c_{k-j} x^{j}
\end{aligned}
$$

from which it follows that

$$
\begin{equation*}
a_{i+1, j}=a_{i, j-1}-a_{i, k-1} c_{k-j} \tag{6}
\end{equation*}
$$

Put $i=j-1$, and (6) becomes

$$
a_{j-1, j-1}-a_{j j}=a_{j-1, k-1} c_{k-j}, \quad(j=1, \cdots, k-1)
$$

Substituting into the right member of (5), we see that

$$
\begin{aligned}
b_{0} & =\sum_{j=1}^{k-1} j\left(a_{j-1, j-1}-a_{j j}\right)+k c_{0} a_{k-1, k-1} \\
& =a_{00}+a_{11}+\cdots+a_{k-1, k-1} .
\end{aligned}
$$

If we compare with equation (4), we have at once $\rho(A)=b_{0}$. This completes the proof of the generalized form of the theorem. In particular, if $P^{\prime} A$ is congruent $(\bmod P)$ to a polynomial of degree $<k-1$, then $b_{0}=0$, and the congruence (1) is solvable.
3. Concluding Remark. The coefficients of $f(t)$ are, but for sign, the elementary symmetric functions of the quantities $A^{p^{n i}}$ $(\bmod P)$. As we have seen above, the coefficient of t^{k-1} is intimately connected with the congruence (1). Similarly, the last coefficient

$$
A^{1+p^{n}+\cdots+p^{n(k-1)}} \equiv\left\{\frac{A}{P}\right\} \quad(\bmod P)
$$

is connected with the congruence

$$
t^{p^{n}-1} \equiv A \quad(\bmod P)
$$

Indeed, the method of §2 leads very naturally to F. K. Schmidt's proof of the theorem of reciprocity:

$$
\left\{\frac{P}{Q}\right\}=(-1)^{k l}\left\{\frac{Q}{P}\right\}
$$

where P and Q are primary irreducible of degree k and l, respectively.*

The question arises whether the remaining coefficients in $f(t)$ are connected in any direct manner with criteria for the solvability of higher congruences.

Duke University

[^1]
[^0]: * Presented to the Society, April 19, 1935, under a different title.
 \dagger See L. Carlitz, On certain functions connected with polynomials in a Galois field, Duke Mathematical Journal, vol. 1 (1935), p. 164.

[^1]: * F. K. Schmidt, Sitzungsberichte der Physikalischmedizinischen Societät zu Erlangen, vol. 58-59 (1928), pp. 159-172.

