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ON T H E LOCUS OF AN ANALYTIC EQUATION 
IN T H E REAL PLANE* 

BY A. B. BROWN 

I have been unable to find in the literature a statement or 
proof of the following theorem. 

THEOREM. Letf(x, y) be analytic at the real point (x0l 3/0), with 
f(xo, yo) = 0 and f(x, y) irreducible at (xo, yo).f Then the locus of 
the equation f(x, y) = 0 in the real xy plane near (xo, yo) con­
sists of one of the following three: (1) the point (#0, yo)', (2) a single 
smooth curve through (#0, 3̂ o); (3) a cusp with vertex at (x0, 3>o). 

More detailed descriptions of (2) and (3) are contained in the 
proof which follows. 

By a change of coordinates we may suppose x0 = 3>o = 0. Ac­
cording to the Weierstrass preparation theorem for the case of 
one independent variable, since ƒ is irreducible at (0, 0), either 
f(x, y)=xti(x, y), with fi(0, 0 ) ^ 0 and fi analytic at (0, 0) or 

(1) ƒ(*, y) E [ym + AiWy»-1 + • • • + Am(x)]Q(x, y), 

with A as above, m>0y Aj(x) analytic at x = 0, and i4y(0)=0, 
( i = l, • • • , m). Since in the first case the real locus ƒ(x, y)=0 
is merely a straight line, it is sufficient to consider the case that 
(1) holds. 

Since ƒ is irreducible at (0, 0), the same is true of the algebroid 
function in (1), and hence its m-leaved Riemann surface is con­
nected near (0, 0) and we can uniformize locally as follows: 

(2) x = tm, 

(3) y = iK*) = atf + a2t
2 + • • • , 

with yj/ analytic a t 2 = 0, and a neighborhood of the origin in the 

* Presented to the Society, February 23, 1935. 
f That is, not the product, near (xo, yo) in the 4-space of the complex 

variables, of two functions each analytic and zero at (xo, ^o). For theorems 
which we use involving functions of complex variables, see W. F. Osgood, 
Lehrbuch der Funktionentheorie, vol. 1, Chapter 8, §14, and vol. 2, part 1, Chap­
ter 2, §§2, 4, 7, 9, 10,11. 
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/ plane giving exactly the points (x, y) in a neighborhood of (0, 0) 
satisfying ƒ(#, y) = 0, each just once. Now x is real if and only if 

(4) t = Tekrilm, {k = 0, 1, • • • , m - 1), 

with r real and positive, negative, or zero. Substituting from (4) 
in (3), for a fixed value of k we get 

(5) y = 0/c(r) = Jjb.ir + bk,2T
2 + • • • , bk,p = a**""*. 

Either all the coefficients in (5) are real, in which case equation 
(4) for the given k, together with (2) and (3), gives only real points 
(x, y), or else there is a first non-real bk,j. In this case we have 
from (5) that 

y = R(r) + TtQ>kfi + bk,i+1T + bk,j+2r
2 + • • • ) , 

where R(T) is real. Since bk,3- is not real, we see that for suffi­
ciently small r the parenthesis is not real. Since r is real, it follows 
that for small values of TT^0, y is not real. When r = 0, y = 0. 
We thus see that in this case only r = 0 gives real y. Next we show 
that at most one value of k can give real y for real r ^ 0. 

Suppose t=rekTilm a,ndt = reJ'Ti/m
1 with 0<j — k<m, both gave 

real loci for real r, when used with (2) and (3). Then bk,, = ave
kvrilm 

and bj,v = ave
J'viri/m would be real, 0 = 1, 2, • • • ), and hence if 

a„?^0, their ratio eu-k)p*i/m would be real. Therefore {j — k)v/m 
would be an integer. Let m = Wi-m2, where mi is the H. C. F. 
of (j — k) and m. Thus w 2 > l , since 0<j — k<m. Then v would 
have to be a multiple of m2i and hence 

(6) y = * ( / ) s f ( * " 4 ) , 

with f analytic a t the origin. Now if we set /i = te2Ti/m2,then 
(/i)m = f"e2Tmi< = /m, and /im2 = /m»e2T* = tm2. Hence from (2) and (6) 
we see that h and / would give the same (x, y). But since m2 > 1, 
h^t if ty^O, and therefore we would have a contradiction. Con­
sequently at most one of the m values of k gives real (x, y) when 
used in (2), (3), and (4) with real r ^ 0 . 

We now consider the case that some value of k does give a 
real locus. We define as the branches of the locus for the k in 
question the parts for which r ^ 0 and r ^ 0 , respectively. Thus 
the two branches have the origin as a common end point. From 
(4), (2), and (3) we see that on each of the two branches y is a 
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single-valued real function of x, analytic when X5*0. If m is even, 
x has the same sign on each branch. If m is odd, x has opposite 
signs on the two branches except at x = 0, and y is a single-valued 
real continuous function of x for x on an interval of the real axis 
containing the origin. 

From (2) and (3) we see that (i) if #i = a2 = • • • = am = 0, then 
\\mx^y/x — 0\ (ii) if # i = • • • = ÛU_I = 0 but a w ^ 0 , then 
lim^o 3>/x = #m7^0; (iii) if some a3-7^0 with 0<j<m, then when 
x approaches zero, y/x becomes infinité. Hence the two branches 
have a common tangent line. By a rotation of axes we now ar­
range that the x axis is the tangent line at the origin, and that 
x ^ O o n the real locus if m is even. Since lim^o y/x must then be 
0, we must have case (i), so that # i= • • • =am = 0. Then, for 

(7)
 dJ. = (dj\ (d2\ = [{m + X)am+ltm +...] (-l—\ 

dx \dt/\dx/ \mtm-lJ 

Therefore lim^o dy/dx = 0. Hence we have a continuously turn­
ing tangent) though if m is even, properly speaking we may only 
say that each branch has the positive x axis as right-hand tan­
gent at the origin (a cusp). 

Now from (7), for t^O, 

dy 
(8) — = bm+it + bm+2t2 + • • • . 

dx 

Hence when t^O, 

d2y r d /dy\l dt / 1 \ 
(i>) *?- UT(*)JT.- ( i-+1+»-*+' • ' >U=> 
Therefore on either branch, with t^O, d2y/dx2 is either iden­
tically zero or nowhere zero. Hence unless the locus is a straight 
line, d2y/dx2 has a fixed sign on each branch except at (XQ, yo) 
where it may be zero, and the branch does not meet T, the tangent 
at (xo, y0), except at (x0, y0). We also see that as a point on the 
locus approaches (x0, 3>o), the curvature either approaches a fixed 
limit, possibly zero, or becomes infinite. The curvature at (xo, 3>o) 
exists for each branch and equals this limit (also in the infinite 
case, where we have infinite curvature at (x0, yo)), as follows 
from (2), (8), and (9). 
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As examples we mention yz—xA = Oy yz—#5 = 0, and 
[y-l + (l-x2)1/2]2-x* = 0 with the determination of ( l - * 2 ) 1 ' 2 

which equals 1 when x = 0. These give respectively, at the origin, 
a minimum, a point of inflection, and a cusp with both branches 
concave upward. In none of the three cases is y analytic in x 
at the origin. An example where the locus is a single point is 
given by y+ix = 0. 

In the case of a reducible function f(xy y), the real locus 
f(x, 30=0 neighboring (x0, y0) consists of a finite number of 
configurations of the kind described in the theorem, no two of 
which have any point except (x0, yo) in common. This is easily 
proved by use of theorems on resultants and on divisibility of 
one function by another. Of course two irreducible factors may 
have exactly the same locus. 

COLUMBIA UNIVERSITY 

A PARTIAL D I F F E R E N T I A L EQUATION CONNECTED 
W I T H T H E FUNCTIONS OF T H E 

PARABOLIC CYLINDER* 

BY HARRY BATEMAN 

The partial differential equation 

* /dW dV\ 

s=i \dx? dx8/ 

which was considered by Mehlerf in 1866, is a slight modifica­
tion of an equation which occurs in wave-mechanics in the 
theory of the rotator in a plane and in space. J The case in 
which v is a positive integer is then of chief physical interest 
and Mehler's simple solution 

(2) F = n#M 8oo, t ^ = ") 
5 = 1 S = l 

acquires a physical significance. The function Hm(x) is the poly­
nomial of Laplace and Hermite defined by the equation 

* Presented to the Society, December 2, 1933. 
t F. G. Mehler, Journal für Mathematik, vol. 66 (1866), p. 161. 
J A. Sommerfeld, Atombau unà Spektrallinien, wellenmechanischer Ergân-

zungsband, 1929, p. 23. 


