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ON GENERALIZATIONS OF LENGTH AND AREAf 
BY J. F . RANDOLPH 

1. Introduction. In the Lebesgue theory of integration, if G 
is a bounded Lebesgue measurable point set on the x axis and 
f(x) is a non-negative bounded Lebesgue measurable function on 
G, then the plane set H, consisting of all points (x, y) such that 
x is on G and 0 S y S j\x), is Lebesgue plane measurable and 
m(2)H = /Gf(x)dx. This relation may be proved by showing first 
that if h is a positive number, then the set Hh: [x in G, O^y^h] 
is Lebesgue plane measurable and 

(A) m™Hh = hmG, 

tha t is, the "area" of Hh is its "base" times its "altitude". 
C. Carathéodory, W. Gross, and others have defined linear 

measure for sets not necessarily on a line, plane measure for 
sets not necessarily on a plane, and in general ^-dimensional 
measure for sets in ^-dimensional space, which are generaliza­
tions of the notion of curve length, surface area, and so on. 
Fundamental and simple as it seems, the question whether the 
generalizations of length and area under these definitions pre­
serve, as do Lebesgue's, the euclidean relation that area is the 
product of length by length, has received no attention. In this 
paper we discuss, without answering completely, the simplest 
phase of this question. 

2. Axioms on General Measure. We first point out some facts 
concerning general measure. 

By postulating the existence of a set function satisfying five 
axioms, Carathéodory [2]$ developed a general theory of meas­
ure in which most of the theorems of the usual Lebesgue theory 
have an analog. Hahn [4], page 444, modified Carathéodory's 
fifth axiom, and by its use proved also the important relation 
that the inner measure of a set is the upper limit of the measures 
of its closed subsets. Harm's modified axiom is as follows. 

f Presented to the Society, September 12, 1935. 
% Numbers in brackets refer to the bibliography. 
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AXIOM V'. The outer measure of a set is the lower limit of the 
measures of all containing sets each of which is the intersection of 
a countable number of open sets. 

3. Carathéodory's Specific Measures. Carathéodory also gave 
the following specific method of attaching a number L*A to a 
set A in a euclidean space Rq of q dimensions. 

With p a positive number let Ui, U2, • • • be a sequence of 
convex point sets open in the space Rq,^ each with diameter 
less than p, whose union contains A. With dk the diameter of 
Uk consider the sums di+d2 + • • • for all such sequences of 
point sets. Designate the greatest lower bound, which may 
be +oo , of such sums by LPA. Then LPA does not decrease as 
p decreases. Thus as p—>0, LPA approaches a limit, finite or in­
finite, which in either case is called the outer linear measure of 
A and is represented by L*A. 

The outer plane measure L*(2)A of a set A is also defined by 
means of open convex sets Uu U2, • • • , each with diameter less 
than p, except that dk is replaced by the two-dimensional di­
ameter of Uk- The two-dimensional diameter of an open convex 
set is the least upper bound of the Lebesgue plane measures of 
the projections of the set on planes of all possible orientations. 
Arguments similar to those for linear measure show that plane 
measure also satisfies Hahn's axiom. 

4. Statement of the Question. The simplest phase of the ques­
tion under discussion for Carathéodory measure may now be 
stated as follows. 

If A is a plane Carathéodory linearly measurable point set with 
LA finite, is the cylindrical set A : [(x, y) in A, OSzSh] Cara­
théodory plane measurable and if so is L(2)Jh = h LA ? 

5. An Inequality f or Carathêodory's Measures. We first prove 
the following theorem. 

THEOREM 1. If the set A has outer linear measure L*A finite, 
then the outer plane measure L*(2)Jh of J h is less than or equal to 
hL*A. 

With p a positive number less than unity, let Ui, U2f • • • 

t Carathéodory did not assume the sets £/& to be open, but proved that the 
same number would be obtained if open convex sets were used. 
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be a sequence of plane convex point sets whose union contains A 
and for which dk<p2/2 and J2kdk<L*A + p . Now let Nk be the 
sequence of integers such that h ^ Nk(dk)

 l,2^h + (dk)
1/2 and form 

the three dimensional sets Vkn of all points (x, y, z) such that 
(x,y)is'm Uktma{n-l)(dkyi2Sz^n{dkyi\ (w = l , 2 , • • • ,Nh). 

Then each Vkn may be included in a right circular cylinder 
with diameter of base dk and altitude (dk)

l/2. Consequently the 
diameter of Vkn is not greater than (dk

2 +dk)
ll2<p. Thus, with 

Dkn the two-dimensional diameter of Vkn, we have 

V2)(A) =g I E ^ » . 
k n 

But the projection on any plane of a right circular cylinder with 
diameter of base 3 and altitude a may be included in a rectangle 
with dimensions ô and (d2+a2)112. Thus Dkn^dk(dk

2 +dk)
112 

=dk(dkyi2{dk+iyi2<(dkyi2(p+\y'2dk. s 0 T,nDknsNk{dky>2 

'(p + iyi2dkS(h + (dkyi2)(p + l)U2dk<(h+p)(p + iy/2dk. Conse-
quentlyLp

(2)(/0^(A+p)(p+l)1/2ZA<(^+p)(p+l)1/2(^^+p). 
But this is true for each p so L*(2)Jh ^ &L*^4. In particular, if A is 
Carathéodory linearly measurable, then J h is plane measurable, 
and 

(a) L™Jh g AL4. 

This follows since any cylindrical set of altitude h with a closed 
subset X of A as base is a closed subset of A . Consequently, 
the outer plane measures of the part of A not in this closed sub­
set is less than or equal to hL(A —K), which may be made arbi­
trarily small by a proper choice of K. 

The question turns then on the reverse inequality 

(b) LWJh ^ hLA. 

This inequality, which seems on first thought the more plausible 
of the two, yields to no method of attack we have been able to 
devise. 

6. Discussion of Two Measures. By introducing modifications 
AA and A(2) A of Gross' definitions of measures, we establish an 
inequality corresponding to (b). The situation is, however, 
again disconcerting as we are unable to establish for these meas­
ures the inequality corresponding to (a). 
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A comparison of the numbers assigned by the two definitions 
gives the desired relation between the generalizations of length 
and area for a certain class of sets. For, as we shall show, 
L^Jh^A^Jh and thus hLA^L^Jh^A^Jh^hAA. Conse­
quently, if LA =AA then hLA = L^Jh=A^Jh = hAA. We also 
obtain conditions on the set A sufficient for the equality 
LA =AA. Finally we show that our conditions are not necessary 
for the equality hLA = L(-2)Jh. 

7. The Gross Outer Measure. Following Gross, [3], page 156, 
we fix a rectangular coordinate system and a positive integer k 
and designate as a partial square the set of all points (x, y) 
such that p/2k ^x< (p + l)/2k, q/2k^y< (q + l)/2k, where p and 
q are integers. There is a countable number of partial squares 
containing the plane set A which we designate by Wj} , w£ , • • • . 
Let ok* be the least upper bound of the Lebesgue outer measures 
of the projections oiAwtf on lines of the plane,and form the sums 
Sic(A) =52»-Sfc*, which may be + <*>. Since wé consists of four 
partial squares wll

+i, • • • , «44+i> we have djf gô}.1
+1+ * • • +%4

+i. 
Consequently, Sk(A) t^Sk+i(A), so that linu-ooS*^), which 
may be + oo , exists. This limit is the Gross outer linear measure 
of A and is represented by $0*(A). 

The Gross outer plane measure <3>0*
(2)G4) of a three-dimen­

sional set A is defined in a similar manner. 
This outer linear measure is shown by Gross to satisfy Cara-

théodory's first four axioms. Furthermore, it is seen that 
$o*CA) is not less than the Lebesgue outer measure of the pro­
jection of A on any line. Gross [3], page 158, shows that if 
$*(A) is any other set function satisfying the same four axioms 
and the projection relation, then <£o*C4) ^ $o*04) ; that is, 
$0*04) is the minimum among such measures and is conse­
quently independent of the coordinate system. 

8. The Outer A Measures. The outer linear measure A*̂ 4 we 
shall use is the greatest lower bound of the Gross linear measures 
of all those sets containing A which are the intersections of 
sequences of open sets. Thus A measure satisfies Carathéodory's 
first four axioms, Hahn's Axiom V ; , and the projection relation. 
Consequently, it follows that the inner A measure A*A is the 
upper limit of the A linear measures of closed subsets of A. 

Furthermore, because Gross' measure is the "smallest" in 
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the sense used above, À measure is the minimum of the mea­
sures satisfying Axioms I-V' and the projection relation. In 
particular, if K is a closed subset of A, A* (A -K) ^L*(A -K). 
We thus see that if A is Carathéodory linearly measurable with 
LA finite, then A is also A linearly measurable. 

The converse of this relation—that if A is A linearly meas­
urable, then A is Carathéodory linearly measurable—does not 
follow. For Besicovitch [ l ] , page 456, and Saks [ó] have both 
constructed closed sets, with positive finite Carathéodory linear 
measure, whose projection on any line has Lebesgue measure 
zero. Consequently, any Carathéodory non-linearly measurable 
subset of either of these sets (if such a subset exists) is still A 
linearly measurable since it has outer A linear measure zero. 

9. An Inequality f or A Measures. We shall now prove the fol­
lowing theorem. 

THEOREM 2. If A is a plane A linearly measurable point set 
with A A finite then A*^Jh ^ hAA. | 

Let w£ , wi , • • • be a sequence of partial squares whose union 
contains A. Then, with Wkij the partial cube of all points 
(x, y, z) such that (x, y) is in wi and j/2k^z< (j-\-l)/2k, we 
see that ^2£2iWkiJ contains Jn- Then the projection pi of Awé 
on a line of the plane is Lebesgue measurable. For a closed 
subset K of Awè projects into a closed subset Kp of p{ and 
m^(pi — Kp)^A{Awit—K) and, from the A measurability of 
Awé, the right side of this inequality may be made arbitrarily 
small by a proper choice of K. Thus the set Pi]' of all points 
(x, y, z) such that (x, y) is in pl and j/2k ^ s < ( j + l ) / 2 / c is a 
Lebesgue plane measurable set which is the projection of 
JhWkij on a plane parallel to the z axis. Consequently (see 
equality (A), §1) ra<2>P" = (\/2k)mp\ Thus with A**' the least 
upper bound of the outer Lebesgue plane measures of the 
projections of JhWkli on planes of all possible orientations, 
akij^(l/2k)bk\ and we see that A*WJh^hAA. 

10. A Sufficient Condition. We now see that a sufficient condi­
tion that Jh be Carathéodory plane measurable and have 

f The asterisk is used on the left to indicate outer measure since we are 
not able to prove here, as in the case of Carathéodory measure, that the meas­
urability of J h follows from that of A. 
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L(2)Jh = hLA is that A be Carathéodory linearly measurable 
with LA=AA. Toward giving a condition under which LA 
= AA we make use of the density functions, as defined by 
Besicovitch [ l ] , page 423. Following him, we shall call a point 
set A regular if A is Carathéodory linearly measurable and the 
density of A exists and equals unity at almost all points of A. 

From a special case of one of Besicovitch's theorems [ l ] , page 
426, it follows that at almost all points p of a regular set A there 
exists a line l(p) through p such that 2r and the Lebesgue mea­
sure of the projection [Ac(p, r)]i(p) of Ac(p, r) on l(p) are such 
that 

m[Ac(p,r)]Hp) 

lim = 1. 
r-*o 2r 

Since m[Ac(p, r)]i(p)SAAc(p, r) ^LAc(p, r ) ,we then see that 
limr+oAA c(p, r)/(2r) exists and also equals unity at all points p 
of A except a set of Carathéodory (and consequently A) linear 
measure zero. 

Thus, corresponding to an arbitrary positive number e, there 
exists, for almost all points p of A, a sequence of circles with 
radii approaching zero, for each circle c(p, r) of which 

(1 - e)2r < AAc(p, r) ^ LAc(p, r) < (1 + e)2r. 

Let F represent the collection of all such circles. Since the 
density of A is bounded from zero by unity for almost all of A, 
we see from [5] Lemma 1, §10, that there exists in the family 
of circles F a sequence of mutually exclusive circles c(p, r) whose 
union contains almost all of A. We then observe that 

LA = £ LAc(pi9 n) < (1 + e) E 2U 
% i 

( l + e ) Z < A . 4 c ( ^ r t 0 _ (1 + t)AA 

1 - € " 1 - € 

Since e is arbitrary it follows that LA ^AA. But A 4̂ ^ LA ; hence 
we have the following result. 

THEOREM 3. If A is a plane regular point set, then 

hLA = LWJh = A^Jh = hAA. 

11. The Condition not Necessary. We now give an example of a 
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set A which is not regular, but for which LA = AA. This set was 
constructed by Sierpinski [7], page 184, to show the existence of 
a set which is not regular. 

Let To be an equilateral triangle of side 1. In T0 form three 
equilateral triangles of side 1/3, each with a vertex and two 
sides in common with T0. Call the union of these three triangles 
7Y Now proceed with each triangle of 7 \ as was done with TG} 

thus obtaining a set T2 consisting of 32 triangles each of side 
1/32. In general Tn consists of 3n equilateral triangles each of 
side l / 3 n . The set A is then the intersection ToTxT2 • • • . 

Since the projection of A on any side of To completely fills 
that side, LA ^ 1 and AA ^ 1. On the other hand, for each n, 
the point set Tn is a covering of A by 3n convex point sets each 
with diameter l / 3 n . Thus L1/a*A ^ 3 n ( l / 3 n ) = 1, so LA ^ 1. But 
AA S LA, so we have LA = AA = 1. 

To see that A is not regular, let p be a point of A. Then p 
belongs to some triangle of Tn for every n. Also the circle 
c(p, l /3n) contains all of one triangle of Tn and not more than 
one point of any other triangle of Tn. Consequently, 

LAc(p, 1/3") _ 1/3* _ 1 

2(1/3") ~ 2(1/3") ~ 2 ' 

We thus see that the lower density of A is less than or equal to 
1/2 at each point of A, and A is not regular. 
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