applied to the example discussed in these lines, is unknown. In fact it is not clear that there exist sets E for which $H(E)$ is not vacuous. But it is obvious that $H(E)$ is always contained in $K(E)$, where K is the set-function (assumed additive) in terms of which H is defined.

In the example in question it is true that an "accessible" topology can be defined in terms of neighborhoods in such a way that the function $L x_{n}$ defined in terms of these neighborhoods is identical with the original function L, and so that the set of all continuous functions is dense on the whole space.

Institute for Advanced Study

ON $(2,2)$ PLANAR CORRESPONDENCES

BY L. H. CHAMBERS

1. Introduction. Most of the existing literature dealing with $(2,2)$ planar transformation is of the type given by the product of two harmonic homologies. By this I mean that the pairs of points of the plane π (or $\pi^{\prime \prime}$) are in harmonic homology. Papers of this type were given by E. Amson,* T. Kubota, \dagger and P. Visalli. \ddagger Barraco§ defined an involutorial $(2,2)$ transformation of the plane by means of an involution between the tangents to a conic from points of the plane.

In this paper I shall consider only periodic $(2,2)$ transformations of period two. The treatment in each case, except those involving the Bertini involution, will be analytic. A synthetic treatment of some of the cases has been given by Sharpe and Snyder.|| I shall use the following theorems proved in their paper.

A necessary and sufficient condition that the two images of a point P describe distinct loci as P moves on a curve C is that C touches the branch curve at every non-fundamental point they have in common.

[^0]A necessary and sufficient condition that a $(2,2)$ transformation be the product of a $(2,1)$ transformation and a $(1,2)$ transformation is that the defining curves of the one plane (and hence of the other) define a net.

Bertini proved that every rational involution of the plane was one of four types, namely, harmonic homology, Geiser, Jonquière, or Bertini.* Castelnuovo showed \dagger that these four involutions could be mapped on a double plane and that planar involutions of any order are always rational.

I shall define the $(2,2)$ transformations of this paper as follows. Consider any of the transformations $(H),(G),(J),(B)$ as existing in the planes π and $\pi^{\prime \prime}$, and mapped doubly upon a plane π^{\prime} in such a manner that the two points in involution correspond to a single point of the plane π^{\prime}. Associating points of π^{\prime} with pairs of points in involution of the planes π and $\pi^{\prime \prime}$ will define a $(2,2)$ transformation.

The $(2,2)$ transformation, as defined, is periodic and of period two. A point P_{1} of the plane π has for its image in π^{\prime} a point P_{1}^{\prime}, and P_{1}^{\prime} has for its image in $\pi^{\prime \prime}$ two points $P_{1}^{\prime \prime}, P_{2}^{\prime \prime}$, which are in involution. By the inverse transformation the points $P_{1}^{\prime \prime}, P_{2}^{\prime \prime}$, have for image the point P_{1}^{\prime} of π^{\prime}. The image of P_{1}^{\prime} in π is the point P_{1}, and a point P_{2}, associated with P_{1} in the involution of the plane π.

By this method of generating $(2,2)$ transformations, there are sixteen types. Of these, only ten are distinct. Various cases of each type arise due to the mapping used in the plane π^{\prime}. Superposition of fundamental elements of the plane π^{\prime} cause a reduction in the order of the transformations.

Zeuthen's theorem \ddagger will not apply in the Bertini types if the image curve, in the plane of the Bertini, degenerates unless both components of the curve are considered simultaneously. The mapping of $(H),(G)$, and (J) upon a double plane has been done by Snyder§ and will not be repeated.
2. The Mapping of (B) Upon a Double Plane. This will be done by a different method than previously employed. The (B)

[^1]involution of π can be defined by the web of curves
\[

$$
\begin{equation*}
a \phi^{2}+b \phi \psi+c \psi^{2}+d f=0 \tag{1}
\end{equation*}
$$

\]

where ϕ and ψ are general cubic curves and f is a sextic having double points at eight of the nine intersections of ϕ and $\psi .^{*}$

Refer the points of π to those of a 3-way space by the equations

$$
\begin{equation*}
\xi=\phi^{2}, \quad \eta=\phi \psi, \quad \zeta=\psi^{2}, \quad \tau=f \tag{2}
\end{equation*}
$$

The pairs of points in involution are mapped doubly upon the cone $\Gamma \equiv \eta^{2}-\xi \zeta=0$ whose vertex arises from the ninth point of intersection of ϕ and ψ and whose generators correspond to cubics of the pencil $\Lambda \equiv \phi+\lambda \psi=0$. By a stereographic projection \dagger of Γ upon $\pi^{\prime},(B)$ will be mapped doubly upon π^{\prime}.

The inverse transformation is obtained by solving the equations

$$
\begin{align*}
\psi \xi-\phi \eta & =0 \\
f \zeta-\psi^{2} \tau & =0 \tag{3}
\end{align*}
$$

Since sixteen roots of this solution are known, the resulting equation is quadratic. The coincidence curve is

$$
\begin{equation*}
K_{9} \equiv \frac{\partial(\phi, \psi, f)}{\partial\left(x_{1}, x_{2}, x_{3}\right)}=0 \tag{4}
\end{equation*}
$$

We have $K_{9}: 8 Q_{i}{ }^{3}$. A cubic of Λ meets K_{9} in three variable points, hence K_{9} is represented in the 3-way space as the intersection of Γ with a cubic surface and projects into $L_{6}^{\prime}:\left(P_{1}^{\prime} \equiv P_{2}^{\prime}\right)^{3}$ (that is, two consecutive 3 -fold points). The tangent γ^{\prime} to L_{6}^{\prime} at $P_{1}^{\prime} \equiv P_{2}^{\prime}$ is determined by the tangent plane to Γ at the vertex of projection.

A line $l(x)$ is met by any cubic Λ in three points and is represented in π^{\prime} by a $C_{6}^{\prime}:\left(P_{1}^{\prime} \equiv P_{2}^{\prime}\right)^{3}, 4 P^{\prime 2}$ 。 $8 Q_{i} \sim 8 C_{2}^{\prime}:\left(P_{1}^{\prime} \equiv P_{2}^{\prime}\right)$ with γ^{\prime} as tangent. Points of γ^{\prime} correspond to directions through P_{1}, P_{2}, the images of the vertex of projection. The line $l^{\prime}\left(x^{\prime}\right)$ meets each fundamental conic in two points and has for image a $C_{6}: 8 Q_{i}{ }^{2}, P_{1}, P_{2}$. A line $l^{\prime}\left(x^{\prime}\right):\left(P_{1}^{\prime} \equiv P_{2}^{\prime}\right)$ will determine two generators of Γ, one of which is fixed; hence $\left(P_{1}^{\prime} \equiv P_{2}^{\prime}\right) \sim C_{3}$ of Λ.

[^2]3. The Transformation $(H)(H)$. Let the two transformations (H), of the planes π and $\pi^{\prime \prime}$, be mapped independently upon the plane π^{\prime}.

Case I. If the transformation (x^{\prime}) into (\bar{x}^{\prime}) is

$$
x_{i}^{\prime}=\sum_{j=1}^{3} g_{i j} \bar{x}_{j}^{\prime},
$$

the $(2,2)$ transformation is obtained by combining the two $(2,1)$ transformations and this $(1,1)$ transformation. The F-points of π are $(0,1,0)$ and $\left(\pm\left(G_{11} G_{31}\right)^{1 / 2}, G_{21}, G_{31}\right)$, which $\sim g_{31} x_{1}{ }^{\prime \prime 2}$ $+g_{32} x_{2}^{\prime \prime} x_{3}^{\prime \prime}+g_{33} x_{3}^{\prime \prime 2}=0$ and $x_{3}^{\prime \prime}=0$, respectively. L_{4} is a degenerate quartic composed of two conics. A similar F system and branch curve exist in $\pi^{\prime \prime}$. The line $l(x) \sim C_{4}^{\prime}:[(0,1,0) \equiv(0,1,0)]^{2}$. The line $l^{\prime \prime}\left(x^{\prime \prime}\right)$ has a similar image in π.

Case II. If the transformation existing between (x^{\prime}) and (\bar{x}^{\prime}) is $x_{1}^{\prime}=\bar{x}_{i}^{\prime}$, the $(2,2)$ transformation is rational. There are no F-elements in either π or $\pi^{\prime \prime}$, and $L_{1} \equiv x_{1}=0, L_{1}^{\prime \prime} \equiv x_{1}^{\prime \prime}=0$. The line $l(x) \sim C_{2}^{\prime \prime}$ composed of two lines. The line $l^{\prime \prime}\left(x^{\prime \prime}\right)$ has a similar image in π.
4. The Transformation $(G)(H)$. Combining the mapping of (G) of π with the mapping of (H) of $\pi^{\prime \prime}$, the resulting $(2,2)$ transformation is of the type $(G)(H) .7 Q_{i} \sim 7 C_{2}^{\prime} . P_{1}, P_{2} \sim x_{3}^{\prime \prime}=0$. $(0,1,0)$ of $\pi^{\prime \prime} \sim x_{1} C_{2}-x_{2} C_{3}=0 . L_{6} \equiv\left(x_{2} C_{3}-x_{3} C_{2}\right)\left(x_{1} C_{2}-x_{2} C_{3}\right)=0$. $L_{8}^{\prime}:[(0,1,0) \equiv(0,1,0)]^{4}$. The line $l(x) \sim C_{6}{ }^{\prime \prime}: P_{1}^{\prime \prime 2}, P_{2}^{\prime \prime 2}$ $[(0,1,0)=(0,1,0)]^{4}, 2 P^{\prime \prime 2}$. The line $l^{\prime \prime}\left(x^{\prime \prime}\right) \sim C_{6}: 7 Q_{i}{ }^{2}$.
5. The Transformation $(J)(H)$. By combining the mapping of (H) of $\pi^{\prime \prime}$ with the mapping of (J) of π, the $(2,2)$ transformation $(J)(H)$ is obtained.

Case I. Let the transformation of the plane π^{\prime} be

$$
x_{i}^{\prime}=\sum_{j=1}^{3} g_{i j} \bar{x}_{j} .
$$

$(0,0,1)$ of $\pi \sim C_{2(m-1)}^{\prime \prime}:[(0,1,0) \equiv(0,1,0)]^{m-1}, 2 P^{\prime \prime m-2}$. $P_{1}, \quad P_{2} \sim x_{5}^{\prime \prime}=0 . \quad 4(m-1) Q_{i} \sim 4(m-1) C_{2}^{\prime \prime}:(0, \quad 1, \quad 0) . \quad P_{3}$, $P_{4} \sim x_{3}^{\prime \prime}=0 . \quad(0,1,0)$ of $\pi^{\prime \prime} \sim C_{m+1}:(0,0,1)^{m-1} . P_{1}^{\prime \prime}, P_{2}^{\prime \prime}$ $\sim M_{1}-a_{3} M_{2}=0 . P_{3}^{\prime \prime}, P_{4}^{\prime \prime} \sim a_{1} x_{1}+a_{2} x_{2}=0 . \quad L_{2(m+1)}$ degenerates into two parts of order $(m+1)$, each part having an $(m-1)$-fold point at $(0,0,1) . L_{4 m}^{\prime \prime}:[(0,1,0) \equiv(0,1,0)]^{2 m}, 2 P^{2(m-1)}, 2 P^{2}$.

The line $l(x) \sim C_{2(m+1)}^{\prime \prime}:[(0,1,0) \equiv(0,1,0)]^{m+1}, 2 P^{m}$. The line $l^{\prime \prime}\left(x^{\prime \prime}\right) \sim C_{2(m+1)}:(0,0,1)^{2(m-1)}, 4(m-1) Q_{i}{ }^{2}, P_{1}{ }^{2}, P_{2}{ }^{2}$.

Case II. Let the transformation of the plane π^{\prime} be $x_{i}^{\prime}=\bar{x}_{i}^{\prime}$. $4(m-1) Q_{i} \sim 4(m-1) C_{2}^{\prime \prime} . \quad P_{1}, \quad P_{2} \sim C_{2}^{\prime \prime} . \quad(0,0,1) \sim C_{2(m-1)}^{\prime \prime}$ $:[(0,0,1) \equiv(0,0,1)]^{m-2},[(0,1,0) \equiv(0,1,0)]^{m-1} . \quad P_{3}, P_{4}$ $\sim x_{3}^{\prime \prime}=0 .(0,1,0)$ of $\pi^{\prime \prime} \sim M_{2}=0 .(0,0,1)$ of $\pi^{\prime \prime} \sim M_{1}-a_{3} M_{2}=0$. $P_{1}^{\prime \prime}, P_{2}^{\prime \prime} \sim a_{1} x_{1}+a_{2} x_{2}=0 . \quad L_{2(m+1)} \equiv x_{1}\left(a_{1} x_{1}+a_{2} x_{2}\right)\left(M_{1}-a_{3} M_{2}\right) M_{2}$. $L_{4 m}^{\prime \prime}:[(0,1,0) \equiv(0,1,0)]^{2 m},[(0,0,1) \equiv(0,0,1)]^{2(m-1)}$. The line $l(x) \sim C_{2(m+1)}^{\prime \prime}:[(0,1,0) \equiv(0,1,0)]^{m+1},[(0,0,1) \equiv(0,0,1)]^{m}$. The line $l^{\prime \prime}\left(x^{\prime \prime}\right) \sim C_{2(m+1)}: 4(m-1) Q_{i}{ }^{2}, P_{1}{ }^{2}, P_{2}{ }^{2},(0,0,1)^{2(m-1)}$.
6. The Transformation $(B)(H)$. Case I. Let (H) of $\pi^{\prime \prime}$ be mapped upon π^{\prime} and (B) of π be mapped upon π^{\prime}, so that $P_{1}^{\prime} \equiv P_{2}^{\prime}$ is a general point $\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$. Eight points $Q_{i} \sim 8 C_{4}^{\prime \prime}$ $:[(0,1,0) \equiv(0,1,0)]^{2} . \quad P_{1}, P_{2} \sim C_{2}^{\prime \prime}:(0,1,0) . \quad P_{3} P_{4} \sim x_{3}^{\prime \prime}=0$. $(0,1,0)$ of $\pi^{\prime \prime} \sim C_{6}: 8 Q_{i}{ }^{2}, P_{1}, P_{2} . L_{12}: C_{6} \cdot \bar{C}_{6}$, each of the net (1). $L_{12}^{\prime \prime}: 2\left(P_{1}^{\prime \prime} \equiv P_{2}^{\prime \prime}\right)^{2}, \quad[(0,1,0) \equiv(0,1,0)]^{6}$. The line $l(x) \sim C_{12}^{\prime \prime}$ $:[(0,1,0) \equiv(0,1,0)]^{6}, 8 P^{\prime \prime 2}, 2\left(P_{1}^{\prime \prime} \equiv P_{2}^{\prime \prime}\right)^{3}$. The line $l^{\prime \prime}\left(x^{\prime \prime}\right)$ $\sim C_{12}: 8 Q_{i}{ }^{4}, P_{1}{ }^{2}, P_{2}{ }^{2}$.

Case II. Let (B) be mapped on π^{\prime} so that $P_{1}^{\prime} \equiv P_{2}^{\prime}=(0,1,0)$, $\gamma^{\prime} \neq x_{1}^{\prime}=0, \quad \gamma^{\prime} \neq x_{3}^{\prime}=0 . \quad 8 Q_{i} \sim 8 C_{4}^{\prime \prime}:(0,1,0)^{3} . \quad P_{1} P_{2} \sim C_{2}^{\prime \prime}$. $P_{3} P_{4} \sim x_{3}^{\prime \prime}=0 . \quad(0,1,0)$ of $\pi^{\prime \prime} \sim C_{3}$ of $\Lambda . ~ L_{6}: 2 C_{3}$ of $\Lambda . ~ L_{12}^{\prime \prime}$ has 9 branches through $(0,1,0)$ by threes in three directions, $p^{\prime \prime}=10$. The line $l(x) \sim C_{12}: 8 P^{\prime \prime 2}$ and the singularities of $L_{12}^{\prime \prime}$. The line $l^{\prime \prime}\left(x^{\prime \prime}\right) \sim C_{12}: 8 Q_{i}{ }^{2}, P_{1}{ }^{2}, P_{2}{ }^{2}$.

Case III. Let (B) be mapped upon π^{\prime} so that $P_{1}^{\prime} \equiv P_{2}^{\prime}$ $=(0,1,0), \gamma^{\prime} \equiv x_{3}^{\prime}=0 . \quad 8 Q_{i} \sim 8 C_{4}^{\prime \prime}:(0,1,0)^{3}$ with $x_{3}^{\prime \prime}=0$ as tangent. $P_{1}, P_{2} \sim x_{3}^{\prime \prime}=0 .(0,1,0)$ of $\pi^{\prime \prime} \sim C_{3}$ of $\Lambda . L_{6}: 2 C_{3}$ of Λ. $L_{12}{ }^{\prime \prime}$ has 9 branches through ($0,1,0$) with $x_{3}^{\prime \prime}=0$ as tangent. The line $l(x) \sim C_{12}{ }^{\prime \prime}: 8 P^{\prime \prime 2}$ and singularities of $L_{12}^{\prime \prime}$. The line $l^{\prime \prime}\left(x^{\prime \prime}\right) \sim C_{12}: 8 Q_{i}{ }^{4}, P_{1}{ }^{2}, P_{2}{ }^{2}$.
7. The Transformation $(G)(G)$. Combining two mappings of (G) we obtain the transformation $(G)(G) .7 Q_{i} \sim 7 C_{3}^{\prime \prime} . L_{12}: 7 Q_{i}{ }^{4}$. The line $l(x) \sim C_{9}^{\prime \prime}: 7 Q_{i}{ }^{3}, 2 P^{\prime \prime 2}$. Similar results hold for the plane $\pi^{\prime \prime}$.
8. The Transformation $(G)(J)$. Let the transformation (J) of $\pi^{\prime \prime}$ be mapped upon π^{\prime}. Combining this mapping with that of (G), we obtain the transformation $(G)(J) .7 Q_{i} \sim 7 C_{m+1}^{\prime \prime}: P_{1}^{\prime \prime}, P_{2}^{\prime \prime}$, $4(m-1) Q_{i}^{\prime \prime},(0,0,1)^{m-1} . P_{1}, P_{2} \sim M_{1}-a_{3} M_{2}=0 . \quad P_{3}, P_{4} \sim a_{1} x_{1}^{\prime \prime}$
$+a_{2} x_{2}^{\prime \prime}=0.4(m-1) Q_{i}^{\prime \prime} \sim 4(m-1) C_{3}: 7 Q_{i} . \quad P_{1}^{\prime \prime}, P_{2}^{\prime} \sim C_{3}: 7 Q_{i}$. $(0,0,1)$ of $\pi^{\prime \prime} \sim C_{3(m-1)}: 7 Q_{i}^{m-1}, 2 P^{m-2} . \quad L_{6 m}: 2 P^{2(m-1)}, 2 P^{2}$, $7 Q_{i}{ }^{2 m} . \quad L_{4(m+1)}^{\prime \prime}: 4(m-1) Q_{i}{ }^{1 / 4}, P_{1}{ }^{\prime \prime 4} P_{2}^{\prime \prime 4},(0,0,1)^{4(m-1)}$. The line $l(x) \sim C_{3(m+1)}^{\prime \prime}: 4(m-1) Q_{i}{ }^{3}, P_{1}^{\prime \prime 3}, P_{2}^{\prime \prime 3},(0,0,1)^{3(m-1)}, 2 P^{2}$. The line $l^{\prime \prime}\left(x^{\prime \prime}\right) \sim C_{3(m+1)}: 7 Q_{i}{ }^{m+1}, 2 P^{m}$.
9. The Transformation $(B)(G)$. Let the transformation (G) of $\pi^{\prime \prime}$ be mapped upon π^{\prime}. Combining this mapping with that of §2, we have the transformation (B) $(G) . \quad 8 Q_{i} \sim 8 C_{6}^{\prime}: 7 Q_{i}^{\prime \prime 2}$. $P_{1}, P_{2} \sim C_{3}^{\prime \prime}: 7 Q_{i}^{\prime} .7 Q_{i}^{\prime \prime} \sim 7 C_{6}: 8 Q_{i}{ }^{2}, P_{1}, P_{2} . L_{24}: 8 Q_{i}{ }^{8}, P_{1}{ }^{4}, P_{2}{ }^{4}$. $L_{18}^{\prime \prime}: 2\left(P_{1}^{\prime \prime} \equiv P_{2}^{\prime \prime}\right)^{3}, 7 Q_{i}{ }^{6}$. The line $l(x) \sim C_{18}^{\prime \prime}: 8 P^{\prime \prime 2}$ and singularities of $L_{18}^{\prime \prime}$. The line $l^{\prime \prime}\left(x^{\prime \prime}\right) \sim C_{18}: 2 P^{2}, 8 Q_{i}{ }^{6}, P_{1}{ }^{3}, P_{2}{ }^{3}$.
10. The Transformation $(J)(J)$. Suppose the equations for the mapping of (J) of $\pi^{\prime \prime}$ upon π^{\prime} are

$$
x_{1}^{\prime} x_{3}^{\prime}-x_{3}^{\prime} x_{1}^{\prime \prime}=0, \quad x_{2}^{\prime} N_{1}^{\prime \prime}-v^{\prime} N_{2}^{\prime \prime}=0
$$

where $N_{1}^{\prime \prime}, N_{2}^{\prime \prime}$ are curves of degree n having an ($n-2$)-fold point at $(0,1,0)$ and $v^{\prime}=\sum_{1}^{3} b_{i} x_{i}^{\prime}$. Combining this mapping with that of (J) of π^{\prime}, we have the transformation $(J)(J) .4(m-1) Q_{i}$ $\sim 4(m-1) C_{n+1}^{\prime \prime}: 4(n-1) Q_{i}^{\prime \prime}, P_{1}^{\prime \prime}, P_{2}^{\prime \prime},(0,1,0)^{n-1} . P_{1}, P_{2}$ $\sim C_{n+1}^{\prime \prime}:(0,1,0)^{n-1}, 4(n-1) Q_{i}^{\prime \prime}, P_{1}^{\prime \prime}, P_{2}^{\prime \prime} .(0,0,1)$ of $\pi \sim C_{(m-1)(n+1)}^{\prime \prime}: 4(n-1) Q_{i}^{\prime \prime m-1}, P_{1}^{\prime \prime}{ }^{m-1}, P_{2}^{\prime \prime m-1},(0,1,0)^{(m-1)(n-1)}$, $2 P^{\prime \prime m-2} .2 Q \sim N_{1}^{\prime \prime}-b_{2} N_{2}^{\prime \prime} .2 Q \sim b_{1} x_{1}^{\prime}+b_{3} x_{3}^{\prime \prime}=0$. Similar images exist in π for the F-system of $\pi^{\prime \prime} . \quad L_{2 n(m+1)}: 2 P^{2(n-1)}, 2 P^{2}$, $4(m-1) Q_{i}{ }^{2 n}, P_{1}{ }^{2 n}, P_{2}{ }^{2 n},(0,0,1)^{2 n(m-1)} . L_{2 m(n+1)}^{\prime \prime}$ is similar to $L_{2 n(m+1)}$. The line $l(x) \sim C_{(m+1)(n+1)}: 2 P^{\prime \prime m}, 4(n-1) Q_{i}^{\prime \prime m+1}$, $P_{1}^{\prime \prime}{ }^{m+1}, P_{2}^{\prime \prime}{ }^{m+1},(0,1,0)^{(n-1)(m+1)}$. A similar image exists for $l^{\prime \prime}\left(x^{\prime \prime}\right)$.
11. The Transformation $(B)(J)$. Case I. Let (B), of π, be mapped upon π^{\prime} so that $P_{1}^{\prime} \equiv P_{2}^{\prime}=\left(a^{\prime}, b^{\prime}, c^{\prime}\right) . \quad 8 Q_{i} \sim 8 C_{2(m+1)}$ $: P_{1}^{\prime \prime 2} P_{2}^{\prime 2}, 4(m-1) Q_{i}^{\prime 2},(0,0,1)^{2(m-1)} . P_{1}, P_{2} \sim C_{m+1}^{\prime \prime}: P_{1}^{\prime \prime}, P_{2}^{\prime \prime}$, $4(m-1) Q_{i},(0,0,1)^{m-1} . \quad 2 Q \sim M_{1}^{\prime \prime}-a_{3} M_{2}^{\prime \prime} . \quad 2 Q \sim a_{1} x_{1}^{\prime \prime}+a_{2} x_{2}^{\prime \prime}$. $4(m-1) Q_{i}^{\prime \prime} \sim 4(m-1) C_{6}$ of (1). $P_{1}^{\prime \prime}, P_{2}^{\prime \prime} \sim C_{6}$ of (1). ($0,0,1$) of $\pi^{\prime \prime} \sim C_{6(m-1)}: 8 Q_{i}{ }^{2(m-1)}, P_{1^{m-1}}, P_{2^{m-1}}, 2 P^{m-2} .2 Q_{i}^{\prime \prime} \sim C_{3}$ of Λ $L_{12 m}: 8 Q_{i}{ }^{4 m}, P_{1}{ }^{2 m}, P_{2}{ }^{2 m}, 2 P^{2}, 2 P^{2(m-1)} . \quad L_{6}^{\prime \prime}(m+1):(0,0,1)^{6(m-1)}$, $P_{1}^{\prime 6}, P_{2}^{\prime \prime 6}, 4(m-1) Q_{i}^{\prime 6}, 2\left(P_{3}^{\prime \prime} \equiv P_{4}^{\prime \prime}\right) . \quad l(x) \sim C_{6(m+1)}^{\prime \prime}: 8 P^{\prime \prime 2}$ and the singularities of $L_{6(m+1)}^{\prime \prime} . \quad l^{\prime \prime}\left(x^{\prime \prime}\right) \sim C_{6(m+1)}: 8 Q_{i}{ }^{2(m+1)}, P_{1^{m+1}}$, $P_{2}{ }^{m+1}, 2 P^{m}$.

Case II. Map (B) upon π^{\prime} so that $P_{1}^{\prime} \equiv P_{2}^{\prime}=(0,0,1)$. $8 Q_{i} \sim 8_{(m+2)}^{\prime \prime}: P_{1}^{\prime \prime}, P_{2}^{\prime \prime}, 4(m-1) Q_{i}^{\prime},(0,0,1)^{m} . \quad P_{1}, P_{2} \sim C_{1}^{\prime \prime}$ $:(0,0,1) . \quad 2 Q \sim a_{1} x_{1}^{\prime \prime}+a_{2} x_{2}^{\prime \prime}$. One C_{3} of $\Lambda \sim M_{1}^{\prime \prime}-a_{3} M_{2}^{\prime \prime}$. $4(m-1) Q_{i}^{\prime \prime}, P_{1}^{\prime \prime}, P_{2}^{\prime \prime} \sim(4 m-3) C_{3}$ of $\Lambda . \quad(0,0,1)$ of $\pi^{\prime \prime} \sim C_{3 m}$ $: 8 Q_{i}{ }^{m} . \quad L_{6(m+1)}: 8 Q_{i}{ }^{2(m+1)}, P_{1}{ }^{2}, P_{2}{ }^{2}, 2 P^{2} . \quad L_{3(m+2)}^{\prime \prime}: P_{1}^{\prime}{ }^{3}, P_{2}^{\prime / 3}$, $4(m-1) Q_{i}^{\prime \prime},(0,0,1)^{3 m}, 2\left(P_{3}^{\prime \prime} \equiv P_{4}^{\prime \prime}\right)^{3} . \quad l(x) \sim C_{3(m+2)}^{\prime \prime}: 8 P^{\prime \prime 2}$ and the singularities of $L_{3(m+2)}^{\prime \prime} . l^{\prime \prime}\left(x^{\prime \prime}\right) \sim C_{3(m+2)}: 8 Q_{i}{ }^{m+2}, P_{1}, P_{2}$. The complete image must be used to apply Zeuthen's theorem.
12. The Transformation $(B)(B)$. Case I. Let the two mappings of (B) upon π^{\prime} be such that no F-elements coincide. $8 Q_{i} \sim 8 C_{12}^{\prime \prime}: 8 Q_{i}^{\prime \prime 4}, P_{1}^{\prime \prime 2}, P_{2}^{\prime \prime 2} . P_{1}, P_{2} \sim C_{6}^{\prime \prime}: 8 Q_{i}^{\prime \prime 2}, P_{1}^{\prime \prime}, P_{2}^{\prime \prime}$. $2 Q \sim C_{3}{ }^{\prime \prime}$ of $\Lambda^{\prime \prime}$. $L_{36}: 8 Q_{i}{ }^{12}, P_{1}{ }^{6}, P_{2}{ }^{6}, \quad 2\left(P_{3} \equiv P_{4}\right)^{3}$. A similar F-system and branch curve exist in $\pi^{\prime \prime} . \quad l(x) \sim C_{3}^{\prime \prime}: 8 P^{\prime \prime 2}$ and the singularities of $L_{36}^{\prime \prime} . \quad l^{\prime \prime}\left(x^{\prime \prime}\right) \sim C_{36}$ similar to $C_{36}^{\prime \prime}$.

Case II. Let the two mappings of (B) be such that ($P_{1}^{\prime} \equiv P_{2}^{\prime}$) $=\left(\bar{P}_{1}^{\prime} \equiv \bar{P}_{2}^{\prime}\right), \gamma^{\prime} \neq \bar{\gamma}^{\prime} .8 Q_{i} \sim 8 C_{9}^{\prime \prime}: 8 Q_{i}^{\prime \prime 3}, P_{1}^{\prime \prime}, P_{2}^{\prime \prime} . P_{1} P_{2} \sim C_{3}^{\prime \prime}$ of $\Lambda^{\prime \prime}$. One C_{3} of $\Lambda \sim C_{3}^{\prime \prime}$ of $\Lambda^{\prime \prime}$. $L_{27}: 8 Q_{i}{ }^{9}, P_{1}{ }^{3}, P_{2}{ }^{3}$. A similar F-system and branch curve exist in $\pi^{\prime \prime} . l(x) \sim C_{27}{ }^{\prime \prime}: 8 P^{\prime \prime 2}, 8 Q_{i}{ }^{9}, P_{1}{ }^{3}$, $P_{2}{ }^{3}$. The complete image must be used to apply Zeuthen's theorem.

Case III. Let the two mappings of (B) be such that ($P_{1}^{\prime} \equiv P_{2}^{\prime}$) $=\left(\bar{P}_{1}^{\prime} \equiv \bar{P}_{2}^{\prime}\right), \quad \gamma^{\prime}=\bar{\gamma}^{\prime} . \quad 8 Q_{i} \sim 8 C_{6}^{\prime \prime}: 8 Q_{i}^{\prime \prime 2}, P_{1}^{\prime \prime}, P_{2}^{\prime \prime} . \quad P_{1}, P_{2}$ $\sim P_{1}^{\prime \prime}, P_{2}^{\prime \prime} . \quad L_{18}: 8 Q_{i}{ }^{6} . \quad L_{18}^{\prime}: 8 Q_{i}^{\prime \prime 6} . ~ A ~ s i m i l a r ~ F$-system exists in $\pi^{\prime \prime} . l(x) \sim C_{18}{ }^{2}: 8 Q_{i}{ }^{\prime \prime}, 8 P^{2} . l^{\prime \prime}\left(x^{\prime \prime}\right) \sim C_{18}: 8 Q_{i}{ }^{6}, 8 P^{2}$.

Cornell University

[^0]: * Erlangen Dissertations, vol. 130 (1903-04).
 \dagger Science Reports, Tôhoku, vol. 6 (1918), and vol. 14 (1925).
 \ddagger Circolo Matematico di Palermo, Rendiconti, vol. 3 (1889), pp. 165.
 § Giornale di Matematiche, vols. 53-54 (1915-16).
 || Transactions of this Society, vol. 18 (1918), pp. 409.

[^1]: * Annali di Matematica, (2), vol. 8 (1877), p. 244.
 \dagger Rendiconti dei Lincei, (5), vol. 2 (1893), p. 205.
 \ddagger F. Severi, Trattato di Geometria Algebraico, vol. 1, part 1, pp. 209.
 § V. Snyder, this Bulletin, vol. 30, pp. 101-124 (1920).

[^2]: * V. Snyder, American Journal of Mathematics, vol. 33 (1910), p. 43.
 \dagger Snyder and Sisam, Analytic Geometry of Space, p. 145.

