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ON T H E MAGNITUDE OF T H E COEFFICIENTS 
OF T H E CYCLOTOMIC POLYNOMIAL 

BY EMMA LEHMER 

Until very recently all the results of the investigations into 
the magnitude of the coefficients of the cyclotomic polynomial 

ci) çn(*) = n (i - *w/5)" (5) 

« I n 

tended to show that these coefficients are very small indeed. In 
fact for n < 105 all the coefficients are ± 1, and 0, and for n < 385 
they do not exceed 2 in absolute value. 

In 1883 Migotti* showed that the coefficients of Qn(x) are all 
± 1 or 0 for n a product of two primes, but noted that the coeffi
cient of x7 in Qiob(x) is — 2. In 1895 Bangf proved that no coeffi
cient of Qn{x) for n=pqr} (p<q<r, odd primes), exceeds p — 1. 

Nothing further was done on the problem until 1931, when 
I. Schur gave a very ingenious proof of the following theorem. 

SCHUR'S THEOREM. There exist cyclotomic polynomials with co
efficients arbitrarily large in absolute value. 

As this proof has not been published, it is given below. J 

PROOF. Let n = p!p2 • • • pt, where /is odd and p\<pi< • • • <pt 
are odd primes such that§ pi+p2>pt- To prove the theorem it is 
sufficient to show that the coefficient of xpt in Qn(x) is 1 —/. This 
can be done by taking Qn(x) modulo xpt+1. We then get 

Qn(*) ^ n a - ^*v(i - *) 
1 = 1 

= (1 + x + • • • + x*'~l)(l — xpl)(l — xp*) • • • ( ! — xpri) 

= (1 + x + • • • + xpt~l)(l — xpl — xp2 — • • • — xpt~1) 
(mod xpt+l). 

* Sitzungsberichte, Akademie der Wissenschaften, Wien. (math), (2), vol. 
87 (1883), pp. 7-14. 

t Nyt Tidsskrift for Mathematik, (B), vol. 6 (1895), pp. 6-12. 
t This proof is essentially the one given by Schur in a letter to Landau. 
§ Such a set of primes exists for every t. 
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Collecting the coefficient of xpt in this last expression we see that 
it is precisely — (t — 1), so that as / increases we can exhibit arbi
trarily large negative coefficients of the cyclotomic polynomials, 
which proves the theorem. 

The question now remains as to the boundedness of the coeffi
cients of Qn(x) for a fixed t. We have already seen that for / = 1 
and 2 these coefficients are actually bounded. The case / = 3 was 
discussed by Bungers* who proved the following theorem. 

BUNGERS ' THEOREM. As n runs over all products of three dis
tinct primes, the cyclotomic polynomials Qn(x) contain arbitrarily 
large coefficients, provided there exist infinitely many prime pairs. 

His proof depends on choosing three primes, two of which 
differ by 2, and in exhibiting a coefficient of Qpqr(x) equal to 
(p + l)/2. I t is the purpose of this note to modify Bungers' proof 
so as to eliminate the unproved assumption of the existence of 
infinitely many prime pairs. 

Let n = pqr, where q = kp + 2, and r = (mpq — 1 ) / 2 . For a given 
p such primes q and r can always be found by Dirichlet's Theo
rem. We proceed to show that the coefficient of xh, where 
h = (p — 3)(qr+l)/2 is (p — l)/2 and hence can be made arbi
trarily large with p. From (1) with n — pqr, we have 

(xpqr - l)(xp - l)(xq - l)(xr - 1) 
QPQr{x) - — __ ^ ^ q _ ^ ^ _ ^ . — _ ^ 

= (1 + X + • • • + XV"1)^ - Xq - Xr + Xq+r) 

' ]C xvqr+Xpr+fipq (mod xpqr). 

Since we are interested in the coefficient of xh, the summation 
indices v, X, /x, satisfy the following inequalities: 

(2) vqr ^ h, \pr S h, fxpq S h. 

We now consider the diophantine equation 

(3) vqr + \pr + ppq + œ + eq + rjr = (p - 3)(qr + l ) /2 = A, 

where œ <p, and e = 0 or 1, rj = 0 or 1. 
The coefficient of xh is now given by the number of solutions 

of (3) with e = 7j minus the number of solutions of (3) with e^rj. 

* Göttingen Dissertation, 1934. 
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Taking (3) modulo p, q, and r we have, since qr^= — 1 (mod p), 

vqr + co + eq + f\r = 0 (mod ^ ) , 

X^r + co + rjr ^ (p — 3)/2 (mod g), 

/*ƒ>£ + co + eg = (p — 3)/2 (mod r) . 

Multiplying the last two congruences by k and ra, respectively, 
and remembering that kpr=l (mod g), while mpq^l (mod r), 
also that q = 2 (mod ƒ>), and r = —1/2 (mod £g), we get 

(4) co == j/ - 2e + rj/2 (mod #) , 

(5) X = k((p - 3)/2 - co + v/2) (modg), 

(6) fx = m((p — 3)/2 — o) — eq) (mod r) . 

We shall now show that if € = 77 = 0, (3) has (p— l ) /2 solutions, 
while in the other three cases (3) has no solutions. 

If € = 77 = 0, (4) gives us co = z> (mod £) and since both co and v 
are less than p, co — v. Equations (5) and (6) become in this case 

X s= k((p - 3)/2 - v) (mod q), 

fx == w((^ — 3)/2 — v) (mod r). 

Since vS{p~ 3)/2, and £(ƒ> - 3)/2 and X are <qt while tn(p - 3)/2 
and /x are < r , these congruences are actually equalities, and we 
have determined for each of the (p — l)/2 values of v, corre
sponding values of X and \x, which are such that X = &(£ —3)/2, 
so that 

\pr = kpr(p - 3)/2 < qr(p - 3)/2 < A, 

and ixSm{p — 3)/2, so that 

Hpq = w/>g(# - 3)/2 = (2r + 1)(# - 3)/2 < h, 

so that all the variables are determined within the ranges (2), 
and hence in the case € = 77 = 0, (3) has (p— l ) /2 solutions. 

For e = l, 77 = 0, (4) gives us co = *> —2 (mod p). Hence either 
co — v — 2, or co = ^ — 1, or p — 2. In the last two cases we can use 
(5) to get 

X E= k((p - 3)/2 - co) = - k(p ± l ) /2 (mod g). 

That is, 

\ = q - k(p ± l ) /2 ^ q- k(p - l ) / 2 , 
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so tha t 

\pr = pqr - kpr(p - l ) /2 > pqr - qr(p - l ) /2 

= qr(p + l ) /2 > A. 

Hence for co = £ — 1 or £ —2, (2) is violated for \pr, and there are 
no solutions. If CO = J> — 2 =" (p — 7)/2y we use (6) and obtain 

M = m((p — 3)/2 — co — q) (mod r) , 
or 

M = r + #&((ƒ> — 3)/2 — co — q) ^ r + w(2 — q). 

Hence 

/tfg = ^ + (2r + 1)(2 - q) 
= (cjr + l)(p - 2) + (4r - p - q + 4) 

> (qr+l)(p-2) > h, 

so that (2) is again violated and there are no solutions of (3) for 
6 = 1 , 7 7 = 0 . 

In the next case e = 0, 77 = 1, we get from (4) co = *> + (ƒ> + 1 ) / 2 , 
and putting this value for co in (6), we have 

H = w ( ( ^ - 3)/2 - „ - ( £ + i)/2) (mod r) . 

Hence/x = r — w(^ + 2) = r — m(^ + l ) /2 , so that 

M ĝ = #gr - (2r + \){p + l ) /2 > ^ r - (2r + l)(c7 - l ) /2 

= far + 1)(# - 1) + (2r- q-2p + 3)/2 

> ( ^ + 1 ) ( # - 1) > A. 

Thus this case does not yield any further solutions. We have now 
shown that (3) has at least (p—l)/2 solutions, since the re
maining case 6 = 77 = 1 would contribute positively, if at all. In 
fact, it can be shown by a similar reasoning that this case does 
not contribute any solutions, so that the coefficient of xh is pre
cisely (p—l)/2. However, in any case, the coefficient of xh in
creases with p, so that we have proved the following theorem. 

THEOREM. As n runs over all products of three distinct primes, 
the cyclotomic polynomials Qn(x) contain arbitrarily large coeffi
cients. 
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