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T H E CONTINUOUS ITERATION OF 
REAL FUNCTIONS* 

BY MORGAN WARD AND F. B. FULLER 

1. Continuous Iterations. Let E(x) be a real, continuous, 
steadily increasing function of x in the range — °o < a ^ # < o o 
such that 

(1) E(x) > x, (^a), 

and let Ei(x)=E(x), E2(x) =E(Ei(x)), • • • denote its succes­
sive iterates. In a previous note in this Bulletin, referred to 
hereafter as Note, one of us f has developed a simple formula for 
continuously iterating the function E(x). We propose here to 
determine all continuous iterations of E(x) subject to a restric­
tion to be explained presently. 

By a continuous iteration of E(x) we shall understand a real 
function ®y(x) of the two real variables x and y with the follow­
ing two properties 

(i) 0oO) = x, 0 i O ) = E(x), (x ^ a). 

(ii) ®v+z(x) = ©*(©*(*)), (* è a, y, s è 0). 

The restriction which we shall impose upon the functions 
&v(x) is the following: 

(iii) ®y(a) is a steadily increasing continuous function of y in 
the range O^y^l. 

2. Prior Investigations. The continuous iteration of real func­
tions was discussed in detail by A. A. Bennett. J So far as the 
authors are aware, other investigators have confined their atten­
tion to the continuous iteration of analytic functions. § The func­
tional equation (ii) was first considered by A. Korkine,|| who 

* Presented to the Society, February 29, 1936. 
t Ward, Note on the iteration of functions of one variable, this Bulletin, vol. 40 

(1934), pp. 688-690. 
% Annals of Mathematics, (2), vol. 17 (1916), pp. 23-69. 
§ See the references in the Note. 
|| Bulletin des Sciences Mathématiques, (2), vol. 6 (1882), part 1, pp. 228-

242. 
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proved formally a result equivalent to the first theorem of this 
paper, assuming that ©„(#) was differentiate with respect to y. 

A complete discussion of the functional equation En(x)=x 
with x, E(x) real, n a positive integer, has been given by J. F. 
Ritt,* and W. Chayothf has recently proved certain very gen­
eral existence theorems on functional equations in the real do­
main. 

3. THEOREM 1. Any function 0 satisfying the conditions (i), 
(ii), and (iii) is continuous and steadily increasing in both x and y. 
Moreover for each such function Q=Ey(x) there exists a unique, 
continuous, steadily increasing solution \p ~f{x) of the functional 
equation 

(2) * ( * + 1) = £(*(*)) , *(0) = 0 

such that% 

(3) Ev(x) = f(f-i(x) + y), (x^0,y^0). 

We have taken here and throughout the remainder of the 
paper, a = 0 and E (a) = 1 as was shown to be possible without 
loss of generality in the Note. 

To prove this theorem, let 0 =Ey(x) be a particular function 
satisfying the conditions (i), (ii), and (iii). Since Ex+i(0) 
= E(Ex(0)), we see from (iii) that EX(0) is continuous and 
steadily increasing in the range 0 g x < <*>. 

Write fix) for £x(0). Then f(x) has a unique, continuous, 
steadily increasing inverse/_ 1(x) in the range 0 ^ x < o o such 
that 

ƒ(ƒ-*(*)) = y-K/to) = x, f(o) = f - m = o. 
Also f(x+y)=Ex+y(0)=Ey(Ex(0))=Ey(f(x)). Hence f(x + l) 
= £(ƒ(#)), and ip=f(x) is a solution of (2). Then 

Ey(x) = £,(ƒ{ƒ-!(*)}) = ƒ(ƒ-!(*) + y), 

* Annals of Mathematics, (2), vol. 17 (1916), pp. 113-122. See also the 
note by A. A. Bennett, loc. cit., p. 123. 

f Monatshefte für Mathematik und Physik, vol. 39 (1932), pp. 279-288. 
X The converse of this theorem is well known. See, for example, A. A. Ben­

nett, Annals of Mathematics, volume cited, pp. 74-75; pp. 23-30. 
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which is (3). It is now evident that Ey(x) is a continuous and 
steadily increasing function both of x and of y. 

Finally, the function f(x) in formula (3) is uniquely deter­
mined by Ey(x). For letting x=y = 0, and using (1), we see that 
/ ( 0 ) = 0 . Hence f~l(0) = 0. Therefore on letting x = 0 and y = x, 
f(x) =EX(0). The problem of determining all continuous itera­
tions of E(x) is thus reduced to the solution of the functional 
equation (2). 

4. THEOREM 2. Let 8(x) be a continuous function of x in the 
interval 0 ^ x < l , which increases steadily from 0(0) = 0 to 
8(1 — 0) = 1. Then every continuous steadily increasing solution 
\p of the functional equation (2) is of the form 

(4) *(*) = E I x ] ( 0 ( * - [*])), 

where [x] denotes the greatest integer in x. 

Conversely, for every such choice of 8(x), (4) gives a continuous 
steadily increasing solution of the functional equation (2). 

First of all, every such increasing solution \f/ of (2) tends to 
infinity with x. For assume that \//(x) tends to a finite limit L as 
x—><x>. Then \f/(x) <L for all finite values of x. Now by (1), 
E(L) >L. Hence, since E(x) is continuous, there exists a positive 
number ô such that E(L — b) >L. Choose x0 so that \[/(x) >L — d, 
x^x0. Then \j/(x+l) =E(\p(x)) >E(L — d) > L , giving a contra­
diction. 

It follows that in the interval 0^x<a, \f/(x) has a unique, 
continuous, steadily increasing inverse <f>=<j>(x) =\f/~l(x) such 
that cj>~>oo as x—>oo . This inverse is readily seen to satisfy the 
famous functional equation of Abel,* 

(5) <t>(E(x)) = <p(x) + 1, 0(0) = 0. 

For convenience, write en for En(0), (w = 0, 1, 2, • • • ). Then 
e0 = 0, 6 i = l , and since by (1), E(x)>x, it follows that en<en+i-

We shall now show that en—>co. For otherwise, en tends to a 
finite limit k, and en<k, (n = 0, 1, 2, • • • ). Since k>l, if £-i(#) 
denotes the inverse of £(#) , then E^i(k) = M, where 0<M<k. 
Fork=E(E^(k)) =E(M)>M. Hence for all sufficiently large n, 
en>M. But then en+i = E(en) >E(M) =k, giving a contradiction. 

* Works, vol. 2, Posthumous Papers, 1881, pp. 36-39. 
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It follows that, given any positive value of x, we can determine 
an integer k such that 

(6) ek ^ x < ek+i. 

Let x lie in the interval (6). Then from the properties of E(x) 
and its ordinary iterates, we can write 

x = Ek(y), y = £__*(*), (0 rg y < 1), 

where E_k(x) denotes the inverse of Ek{x) in the interval 
ek ^ # < o o . 

Now in the interval 0^x< 1, let us write 9~l(x) ior<f>(x). Then 
S~l(0)=0, and B~l{x) increases steadily and continuously as x 
increases, and 6~l(l - 0 ) = l i m x ^ - 1 ( ^ ) = 1 by (5). Furthermore, 
the inverse of 0 - 1 O), which we denote by 0(x), exists and has 
the properties stated in Theorem 2. From (5), we see that 

*(*) = <t>(Ek{y)) = 0(y) + k = 0-i(3O + * 
or 

(7) <t>(x) = fr-i(E_4(*)) + *. 

Since 0 g£_*(*) < 1 , we observe also that k= [tf>], the greatest 
integer in <f>(x). 

To determine \f/, we need only solve (7) for x in terms of </>. 
We have 

0 - [*] = 0- 1 (£-m(*)) , 

0 ( « - [*]) = E _ W ( * ) , 

TT * = Ei*M4>- [*]))• 
Hence* 
W *(*) = £ ï x ] (0 (* - [*]))• 

The proof of the converse for a function 0 satisfying the con­
ditions of the theorem is almost word for word the same as in 
the special case 6{x) =x , which has been given in full in the Note. 

The function 0(x) is arbitrary save for the restrictions stated 
in the theorem. Once chosen, it fixes the iteration completely; 
it is in fact Ex(0). 

CALIFORNIA INSTITUTE OF TECHNOLOGY AND WHITTIER, CALIF. 

* It is obvious that if w(x) denotes a periodic function of x with period one, 
such that TT(X) = 0(X), ( 0 ^ X < 1 ) , then we can write ^(*) =£[*](*-(*)), or more 
concisely still, $(x) = E[x)(rf,(x- [x])), since +(x- [x]) = 0(x- [x]). 


