1936.) ITERATION OF FUNCTIONS 393

THE CONTINUOUS ITERATION OF
REAL FUNCTIONS*

BY MORGAN WARD AND F. B. FULLER

1. Continuous Iterations. Let E(x) be a real, continuous,
steadily increasing function of x in the range —® <a=<x<®
such that

(1) E(x) > x, (x = a),

and let Ei(x) =E(x), E:(x) =E(E\(x)), - - - denote its succes-
sive iterates. In a previous note in this Bulletin, referred to
hereafter as Note, one of ust has developed a simple formula for
continuously iterating the function E(x). We propose here to
determine all continuous iterations of E(x) subject to a restric-
tion to be explained presently.

By a continuous iteration of E(x) we shall understand a real
function ©,(x) of the two real variables x and y with the follow-
ing two properties

() Oo(x) = x, 0:(x) = E(%), (x= a).
(ii) Oy4:(x) = 0,(0.(x)), (x=2a,5,220).

The restriction which we shall impose upon the functions
©,(x) is the following:

(iii) Oy(a) s a steadily increasing continuous function of vy in
the range 0 <y =<1.

2. Prior Investigations. The continuous iteration of real func-
tions was discussed in detail by A. A. Bennett.} So far as the
authors are aware, other investigators have confined their atten-
tion to the continuous iteration of analytic functions.§ The func-
tional equation (ii) was first considered by A. Korkine,|| who

* Presented to the Society, February 29, 1936.

t Ward, Note on the iteration of functions of one variable, this Bulletin, vol. 40
(1934), pp. 688-690.

1 Annals of Mathematics, (2), vol. 17 (1916), pp. 23-69.

§ See the references in the Note.

|| Bulletin des Sciences Mathématiques, (2), vol. 6 (1882), part 1, pp. 228 -
242.
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proved formally a result equivalent to the first theorem of this
paper, assuming that ©,(x) was differentiable with respect to y.

A complete discussion of the functional equation E,(x)=x
with x, E(x) real, n a positive integer, has been given by J. F.
Ritt,* and W. Chayotht has recently proved certain very gen-
eral existence theorems on functional equations in the real do-
main.

3. THEOREM 1. Any function © satisfying the conditions (i),
(ii), and (iii) is continuous and steadily increasing in both x and y.
Moreover for each such function © = E,(x) there exists a unique,
continuous, steadily increasing solution ¢ =f(x) of the functional
equation

) Y+ 1) = EW(s),  ¥(0) =0
such that}
) E(x) = [(/ () + ), (x20,y20).

We have taken here and throughout the remainder of the
paper, a=0 and E(a) =1 as was shown to be possible without
loss of generality in the Note.

To prove this theorem, let © = E,(x) be a particular function
satisfying the conditions (i), (ii), and (iii). Since E.+1(0)
=E(E.(0)), we see from (iii) that E,(0) is continuous and
steadily increasing in the range 0 S x < .

Write f(x) for E.(0). Then f(x) has a unique, continuous,
steadily increasing inverse f~!(x) in the range 0 <x <o such
that

SO = (@) = x,  #(0) = f-1(0) = 0.

Also f(x+y) =E.;,(0)=E,(E.(0)) =E,(f(x)). Hence f(x+1)
=E(f(x)), and ¥ =f(x) is a solution of (2). Then

E,(x) = E(f{f'(»)}) = f(f(x) + ¥,

* Annals of Mathematics, (2), vol. 17 (1916), pp. 113-122. See also the
note by A. A. Bennett, loc. cit., p. 123.

t Monatshefte fiir Mathematik und Physik, vol. 39 (1932), pp. 279-288.

1 The converse of this theorem is well known. See, for example, A. A. Ben-
nett, Annals of Mathematics, volume cited, pp. 74~75; pp. 23-30.
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which is (3). It is now evident that E,(x) is a continuous and
steadily increasing function both of x and of y.

Finally, the function f(x) in formula (3) is uniquely deter-
mined by E,(x). For letting x=y =0, and using (1), we see that
f(0) =0. Hence f~1(0) =0. Therefore on letting x=0 and y=x,
f(x) =E,(0). The problem of determining all continuous itera-
tions of E(x) is thus reduced to the solution of the functional
equation (2).

4. THEOREM 2. Let 0(x) be a continuous function of x in the
interval 0=x<1, which increases steadily from 6(0)=0 to
0(1—0)=1. Then every continuous steadily increasing solution
¥ of the functional equation (2) is of the form

4) ¥(2) = Er(0(x — [2])),
where [x]| denotes the greatest integer in x.

Conversely, for every such choice of 0(x), (4) gives a continuous
steadily increasing solution of the functional equation (2).

First of all, every such increasing solution ¥ of (2) tends to
infinity with x. For assume that ¥ (x) tends to a finite limit L as
x—oo. Then ¢(x) <L for all finite values of x. Now by (1),
E(L) > L. Hence, since E(x) is continuous, there exists a positive
number 6 such that E(L —48) > L. Choose x, so that y(x) >L—34,
xZx,. Then y(x+1)=E@W(x)) >E(L—6)>L, giving a contra-
diction.

It follows that in the interval 0 <x <e, Y(x) has a unique,
continuous, steadily increasing inverse ¢ =¢(x) =y "!(x) such
that ¢— o as x—. This inverse is readily seen to satisfy the
famous functional equation of Abel,*

(5) o(E(x)) = o(x) +1,  ¢(0) =0.

For convenience, write e, for E,(0), (=0,1, 2, - --). Then
e0=0, e;=1, and since by (1), E(x) >x, it follows that e, <én41.

We shall now show that e,—w . For otherwise, e, tends to a
finite limit &, and e, <k, (=0, 1, 2, - - - ). Since k> 1, if E_i(x)
denotes the inverse of E(x), then E_,(k) = M, where 0 < M <k.
For k=E(E_i(k)) =E(M)> M. Hence for all sufficiently large ,
e.> M. But then e, = E(e,) > E(M) =k, giving a contradiction.

* Works, vol. 2, Posthumous Papers, 1881, pp. 36-39.
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It follows that, given any positive value of x, we can determine
an integer k such that

(6) er = x < epys.

Let x lie in the interval (6). Then from the properties of E(x)
and its ordinary iterates, we can write

x=Eyy), y=E.x, (0=y<1),

where E_i(x) denotes the inverse of Ei(x) in the interval
erSx <o,

Now in the interval 0 S x <1, let us write 6-(x) for ¢(x). Then
6-1(0) =0, and 6~'(x) increases steadily and continuously as x
increases, and §~1(1 —0) =lim,.,0-'(x) =1 by (5). Furthermore,
the inverse of 6~!(x), which we denote by 6(x), exists and has
the properties stated in Theorem 2. From (5), we see that

6(x) = ¢(Ex(y)) = ¢(y) + k =67 (y) +

or

(7 (%) = 071 (E_i(x)) + k.

Since 0 S E_x(x) <1, we observe also that k= [¢], the greatest
integer in ¢(x).

To determine ¥, we need only solve (7) for x in terms of ¢.
We have

¢ — [¢] = 6-1(E_141(x)),
8¢ — [¢]) = E_i51(2),
E(6(6 — [0]).

x

[

Hence*
4) ¥(x) = Ez(6( — [s])).

The proof of the converse for a function 8 satisfying the con-
ditions of the theorem is almost word for word the same as in
the special case 6(x) =x, which has been given in full in the Note.

The function 6(x) is arbitrary save for the restrictions stated
in the theorem. Once chosen, it fixes the iteration completely;
it is in fact E.(0).

CALIFORNIA INSTITUTE OF TECHNOLOGY AND WHITTIER, CALIF.

* It is obvious that if = (x) denotes a periodic function of x with period one,
such that =(x) =6(x), (0 =x<1), then we can write y(x) = Efz](x(x)), or more
concisely still, ¢(*) =E@1 (¢ (x— [x])), since y(x— [x]) =0(x— [x]).



