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ON DERIVATIVES OF ORTHOGONAL POLYNOMIALS*
BY H. L. KRALL

1. Introduction. A set ¢o(x) =1, d1(x), p2(x) of polynomials of
degrees 0, 1, 2, - - -, is called a set of orthogonal polynomials
if they satisfy

b b
f n(D)bn(x)dY(x) = 0, [aws>o,  mxw,

where Y(x) is a non-decreasing function of bounded variation.
There is no restriction in assuming the highest coefficient 1.

It has been shown by W. Hahnt that if the derivatives also
form a set of orthogonal polynomials, then the original set were
Jacobi, Hermite, or Laguerre polynomials. His method consisted
in showing that the polynomials satisfy a differential equation
of the type

(@ + bx + ca®¢,’ + (d + ex)d. + Mg = 0.

From this it followed that the set were Jacobi, Hermite, or
Laguerre polynomials.

Here we propose to give a new proof of this result, our point
of view being to answer the question: What conditions on the
weight function result from assuming that both {¢,,(x)} and
{(bn’ (x)} are sets of orthogonal polynomials? However, we shall
assume that (e, b) is a finite interval and dy (x) = p(x)dx,] where
the weight function is L-integrable.

2. A Relation for the Weight Function q(x). Let the set
{q&,,’ (x)} be orthogonal in the interval (¢, d), infinite or not,
with the weight function ¢g(x), that is,

d
[ awsi e iz =0, (m = n).

* Presented to the Society, April 11, 1936.

t W. Hahn, Uber die Jacobischen Polynome und zwei verwandte Polynom-
klassen, Mathematische Zeitschrift, vol. 39 (1935), pp. 634—638.

1 Professor Shohat informs me that he has discussed the general case dy/(x).
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The polynomials {¢>n(x) }, {qbn' (x)} satisfy the recurrence rela-
tions,*
ni2(2) = (& — Capa)Pni1(%) — Nop2dn(x),
Blas(®) = Z T () = Masbd (3)
n - T ©On  Ap4-2@n )
nta "t nt1 *

(n = 0; ¢n, ¢, Any N\d constants).

Differentiating both sides of the first relation and eliminating
the term containing x, by means of the second relation, we get

1 ’ "o "o
¢n+l(x) = ¢n+2(x) + cn+2¢n+l(x) + )‘n+2¢n(x),
n-+2

(ca’, N\ constants).

Remembering that ¢,/ (x), with the weight function ¢(x), is or-
thogonal to any polynomial of degree =n—2, we get

d
(1) [ s@en@u sz = o,

where G, (x) is an arbitrary polynomial of degree <.

LeMMA. Let Q(x) be non-negative in (c, d), and such that the
numbers

d
o= [ 0xtax,  (k=0,1,0),
exist, and for a certain positive integer r
d
@ [ 06z =0, =1+ 1 r+ 2,

Then almost everywhere

P,(x)p(x) in (a,d),
0 elsewhere,

0w = {

where P.(x) is a polynomial of degree <r.

Consider the function

* J. Shohat, Théorie Générale des Polynomes Orthogonaux de Tchebichef,
Mémorial des Sciences Mathématiques, p. 24.
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R(x) = (#o + iz + uex® + - - - + u,x7)p(x).
We determine the {u;} so that

b d
f R(x)xidx = f Q(x)xidx, (i=0,1,---,7);

that is, the u; satisfy the equations

aotto + outhy  + - - -+ oty = o,

oo + oy + - - -+ oty = By,

................

aty + opprths + - - -+ agu, = B,

where

)
ay = f xkp(x)dx.

a

This is always possible for the determinant of this system is
known to be positive.* Now

b d
0= [ K@iz = [ 0@z, G=1,2--).
And then
b d
f R(x)xidx = f Q(x)xidx, (¢=0,1,2,---).

Let
gQ(x) — R(x) in Ey, the points where (a, d) and (¢, d) overlap,
f(x) = — R(x) in E,, the remainder of (a, b),
Q(») in E;, the remainder of (¢, d).
Then

f f(®)aide =0, (i=0,1,2,+--).
E\+EytE3

If (¢, d) is finite, f(x) must be zero almost everywhere, and our

* See Shohat, loc. cit., p. 9, formula (19).
t As a special case, take in (2), n=r+1; that is, fo(x)¢,+¢(x)G.-_1(x)dx=0,
then take G;.i(x)=1.
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lemma follows. Moreover, from the above definition of f(x), we
conclude that R(x), hence p(x), =0 almost everywhere in Ej,
so that both intervals (a, b) and (¢, d) may be reduced to their
common part E;;in other words, here we may take (¢, d) = (e, b).
If (c, d) is infinite, let A =max (|a|, |5]), so that || <4 in
E,+E,, which is identical with (e, b), and let E, be the part of
E;for which lxl = (14a)A4, where a>0is arbitrary. If Q(x) =0,
we have

14+ a)idi | Qx)dx = Q(x)xidx = f f(x)xidx
Ey E, E1+E,

sacf @),
E+E,

fE1+E2 f(x) | dx
JeQ(x)dx

for all even 7, which is impossible unless Q(x) is zero almost
everywhere in E,. Hence (¢, d) reduces to E;+E;—E, and in
(¢, d), |x| <(14a)A4; that is, in view of the arbitrariness of
a(>0),

1+a)y=

| #| in(c,d) < 4 =max (| a|, |5]),

which requires that (¢, d) =(a, b). The following important re-
sult has been established: (¢, d) is finite and coincides with (a, b).
With this lemma, it follows from (1) that

(3) q(x) = (ra® + sz + )p(x),
and we may take c=a,d=».
3. Existence of q’(x). Consider the function
5 =k [ "= npasas,
where k and ! are such that S(b) = O f S(x)dx = f g(x)dx. An
integration by parts applied to f S(x)pni1(x)dx gives, since
S(a) =S() =0,

b b
[ s@ota@as= [“sa@it - dp@iz =0, @z .



1936.] ORTHOGONAL POLYNOMIALS 427

But ¢(x) is the weight function for the orthogonal polynomials
{¢./ (x)}, whence

b 5
fS(x)d;n’H(x)dx =f ¢(®)pnr1(x)dx =0, (n21).
This and the relation fabS (x)dx = f:g(x)dx gives

be(x)x"dx = qu(x)x"dx, (n =z 0),

and then ¢(x) =S(x) almost everywhere. Since S(x) has a deriva-
tive almost everywhere, ¢(x) has a derivative almost everywhere
and

4) q'(x) = k(x — Dp(=), g(a) = q(b) = 0.

4. Discussion of q(x) and p(x). Dividing (4) by (3), we get
7@ _ kD
g(x)  rx24 szt
We proceed to show (i) 7x2+sx+¢ has real zeros, (ii) 0. (i) As-

sume rx2-+sx-+¢ has imaginary zeros. Integrating the differen-
tial equation (5), we get

tog g() = [ oD gyt
o8 7\ = rat -+ sx 4 ¢ e
q(x) - K(’,x2 _|_ sx + t)aeﬁarc tan ('yz+6)’

(a, B, 7, 6, K constants).

(%) q(a) = ¢(b) = 0.

This is incompatible with g¢(a) =¢(b)=0. (ii) Assume first
r=s5=0. Equation (5) becomes

q'(x) = 2ax + B)g(=),
g(x) = Kea="tbz, (a, B, K constants),

which is not zero at ¢ and b.
Next, suppose =0, s#0. Equation (5) gives

(@) _Ke=b _ s
q(x) sx + ¢ sx + ¢
q(x) = K(sx + t)Pe==, (a, B, K constants).
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This cannot vanish at both end points, x =a¢ and x =b5.
Having thus proved (i) and (ii), we set

ra? + sx +t=r(x — g)(x — k), (r # 0, g, h real),
and rewrite (5) as follows:
"(x) k(x — 1) B
g Kk __* }

q(x)—rx2+sx+t_x—g x—h
whence
g(x) = K(x — g)*(x — h)?, (K, a, B, constants).

The conditions ¢g(a) =q(b) =0 demand that g=a, A=0, so that
finally (disregarding inconsequential constant factors)

g(x) = — r(x — a)=(b — x)°.
And then from (3)
q(x) r(x — a)*(b — x)f
ra? 4+ sx + ¢ - r(x — a)(b — %) ’
p(®) = (& — a)* (b — x)f71,

and we can see that «, 8 are both >0.

p(=x) =

5. Conclusion. Since this is the weight function for Jacobi
polynomials, we have thus established the following theorem.

THEOREM. If { ¢,,(x)} is a set of orthogonal polynomials with
the weight function p(x) in the finite interval (a, b), and if we as-
sume that the derivatives {¢, (x)} also form a set of orthogonal
polynomials in a certain interval (c, d) (infinite or not), with a
non-negative weight function q(x), then { da(x) } 15 a set of Jacobi
polynomials.
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