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ON DERIVATIVES OF ORTHOGONAL POLYNOMIALS* 

BY H. L. KRALL 

1. Introduction. A set </>o(#) = 1, </>i(#), <j>i{x) of polynomials of 
degrees 0, 1, 2, • • • , is called a set of orthogonal polynomials 
if they satisfy 

ƒ• & /• b 

<l>m{x)(j)n{x)d\p(x) = 0, I d\p(x) > 0, (m 7* n), 
a J a 

where \[/(x) is a non-decreasing function of bounded variation. 
There is no restriction in assuming the highest coefficient 1. 

It has been shown by W. Hahnf that if the derivatives also 
form a set of orthogonal polynomials, then the original set were 
Jacobi, Hermite, or Laguerre polynomials. His method consisted 
in showing that the polynomials satisfy a differential equation 
of the type 

(a + bx + cx2)(j)nf + (d + ex)4>n + \n<£n = 0. 

From this it followed that the set were Jacobi, Hermite, or 
Laguerre polynomials. 

Here we propose to give a new proof of this result, our point 
of view being to answer the question: What conditions on the 
weight function result from assuming that both {<t>n(x)} and 
[<t>n (x)} are sets of orthogonal polynomials? However, we shall 
assume that (a, b) is a finite interval and d\[/(x) =?=p(x)dx,t where 
the weight function is L-integrable. 

2. A Relation for the Weight Function q(x). Let the set 
{<pn(x)} be orthogonal in the interval (c, d), infinite or not, 
with the weight function q(x), that is, 

I q(x)<f>n (x)4>Jl (%)dx = 0, (m y* n). 

* Presented to the Society, April 11, 1936. 
f W. Hahn, Über die Jacobischen Polynôme und zwei verwandte Polynom-

klassen, Mathematische Zeitschrift, vol. 39 (1935), pp. 634-638. 
t Professor Shohat informs me that he has discussed the general case d\p(x). 
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The polynomials {cj)n(x)}, {<f>n (x)} satisfy the recurrence rela
tions,* 

<l>n+2(%) = (X — C n + 2 ) # n + l ( # ) — X n + 2 0 n ( # ) > 

I X — Cn+2 
• <t>n+î{x) = 0» + l(*) ~ ^n+20n (x) , 

^ + 2 » + 1 

(n ^ 0; cn, £n , Xn, Xn' constants). 

Differentiating both sides of the first relation and eliminating 
the term containing x, by means of the second relation, we get 

0n+l(#) = <l>n+2(x) + Cn+2<j>n+\(x) + X n + 2 0 n ( # ) , 

fl+ 2 
(cn', Xn' constants). 

Remembering that </>n' (x), with the weight function q(x), is or
thogonal to any polynomial of degree ^n — 2, we get 

(1) I q{x)4>n+i(x)Gn-2(x)dx = 0, 

where Gn(x) is an arbitrary polynomial of degree Sn. 

LEMMA. Let Q(x) be non-negative in (c, d), and such that the 
numbers 

0* = j Q(x)xkdx, (k = 0, 1, • • • ) , 

exist, and for a certain positive integer r 

(2) ƒ Q(x)4>»(x)G„-r-i(x)dx = 0, (n = r + 1, r + 2, • • • ) . 

TT^tt almost everywhere 

(Pr(x)p(x) in {a, b), 
Q(x) = < 

I 0 elsewhere j 

where Pr(x) is a polynomial of degree ^r. 

Consider the function 

* J. Shohat, Théorie Générale des Polynômes Orthogonaux de Tchebichef, 
Mémorial des Sciences Mathématiques, p. 24. 
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R(x) = (u0 + U\% + u2x
2 - { - . . . + urx

r)p(x). 

We determine the {Ui} so that 

ƒ» 6 /* d 

R(x)x{dx = j Q(x)xidx9 

(* = 0 , 1 , . . . , r ) ; 

that is, the w; satisfy the equations 

a0^o + «1^1 + • • • + ocrur = /3o, 

aiu0 + a2Ui + • • • + ar+iUr = /Si, 

where 

rb 

OLJC = I xkp(x)dx. 
J a 

This is always possible for the determinant of this system is 
known to be positive.* Now f 

R(x)4>r+i(x)d% = I Q(x)4>r+i(x)dx, (i = 1, 2, • • • ) . 
a J c 

And then 

ƒ> 6 /* d 

R(x)x{dx = I Q(x)xidxy (i = 0, 1, 2, • • • ) . 
a ^ c 

Let 
Q(x) — R(x) in Ei, the points where (a, 6) and (c, J) overlap, 

— R(x) in E2, the remainder of (a, b), 

Q(x) in E3, the remainder of (c, d). 

Then 

/
f(x)xidx = 0, (i = 0, 1, 2, • • • ) . 

If (c, d) is finite, f(x) must be zero almost everywhere, and our 

* See Shohat, loc. cit., p. 9, formula (19). 
f As a special case, take in (2), n — r-\-i\ that is, f*Q(x)<f>r+i(x)Gi-i(x)dx=0, 

then take Gt_i(x) = l . 
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lemma follows. Moreover, from the above definition of f(x), we 
conclude that R(x), hence p(x)> = 0 almost everywhere in E3, 
so that both intervals (a, b) and (c, d) may be reduced to their 
common part E\\ in other words, here we may take (c, d) = (a, b). 
If (c, d) is infinite, let A — max (\a\, \b\), so that \x\ ^A in 
E1+E2, which is identical with (a, b), and let E4 be the part of 
E 3 for which \x\ ^ (1 +a)A, where a >0 is arbitrary. If Q(x) ^ 0, 
we have 

(1 + aYA1 Q(x)dx^ Q(x) xldx = I f(x)x{dx 

^ A1 I I f{x) I dx, 

,. , v. ^ A 1+^21/0)1 <** 
(1 + OLY S ~ , 

jE&{x)dx 
for all even i, which is impossible unless Q(x) is zero almost 
everywhere in E±. Hence (c, d) reduces to E1+E3 — E4 and in 
(c, d), \x\ <{\-\-a)A\ that is, in view of the arbitrariness of 
<*(>0), 

I x I in (c, d) ^ A = max ( | a |, | b \ ) , 

which requires that (c, d) = (a, b). The following important re
sult has been established : (c, d) is finite and coincides with (a, b). 

With this lemma, it follows from (1) that 

(3) q(x) = (rx2 + sx + t)p(x), 

and we may take c~ay d = b. 

3. Existence of q'(x). Consider the function 

ƒ (* - *)#(* S(x) = k I (x — l)p(x)dx, 

where k and / are such that 5(6) = 0 , JaS(x)dx=faq(x)dx. An 
integration by parts applied to faS(x)<i)n+i(x)dx gives, since 
5(a) =5(6) = 0 , 

S(x)(j>n+i(x)dx — I cf)n+i(x)k(x — l)p{x)dx = 0, ( « = " ! ) . 
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But q(x) is the weight function for the orthogonal polynomials 
{cf>n (x)}, whence 

ƒ* b nb 

S(x)<f>n+i(x)dx = I q(x)<t>n+i(x)dx = 0, ( « ^ 1). 
a J a 

This and the relation faS(x)dx=faq(x)dx gives 

S(x)xndx = I q(x)xndx, (n ^ 0), 
a J a 

and then g(x) = S(x) almost everywhere. Since S(x) has a deriva
tive almost everywhere, q(x) has a derivative almost everywhere 
and 

(4) q'{x) = k(x - l)p(x), q{a) = q(b) = 0. 

4. Discussion of q(x) and p(x). Dividing (4) by (3), we get 

q'(x) k(x — I) 
(5) ± - ^ = — , q{a) = ? ( i ) = 0. 

ç(^) rx2 -\- sx + t 

We proceed to show (i) rx2+sx+t has real zeros, (ii) r ^ O . (i) As
sume rx2+sx + t has imaginary zeros. Integrating the differen
tial equation (5), we get 

/

k(x - I) 
—— — dx + c, 
rxl + sx + t 

q(x) = K(rx2 + sx + /)<V*arctan <?*+*>, 

(a, 0, 7, ô, i£ constants). 

This is incompatible with q(a) =q(b) =0. (ii) Assume first 
r = 5 = 0. Equation (5) becomes 

q'(x) = (2a# + P)q(x), 

q(x) = Keax2+P*9 (a, 0, i£ constants), 

which is not zero at a and 6. 
Next, suppose r = 0, s ^ 0 . Equation (5) gives 

g'(x) jfe(* - 0 , 0 * 
= a • ' #(#) s# + / 50; + / 

#(#) = K(sx + / ) ^ a * , (a, 0, K constants). 
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This cannot vanish at both end points, x = a and x = b. 
Having thus proved (i) and (ii), we set 

rx2 + sx + t = r{x — g)(x — h), {r 9e 0, g, h real), 

and rewrite (5) as follows: 

q'{x) k{x — I) a (3 

q{x) rx2 + sx + t x — g x — h 

whence 

q{x) = K(x — g)a(x — hy, (K, a, j3, constants). 

The conditions q(a) = q(b) = 0 demand that g = a, h = b, so that 
finally (disregarding inconsequential constant factors) 

q(x) = — r(x — a)a{b — x)&. 

And then from (3) 

q(x) r(x — a)a{b — xY 

rx2 + sx + / r{x — a){b — x) 

p(x) = (x - a)~-l(J> - xy~l, 

and we can see that a, j8 are both > 0 . 

5. Conclusion. Since this is the weight function for Jacobi 
polynomials, we have thus established the following theorem. 

THEOREM. If {4>n{x)} is a set of orthogonal polynomials with 
the weight f unction p(x) in the finite interval (a, b), and if we as
sume that the derivatives {0n' (») j also form a set of orthogonal 
polynomials in a certain interval (c, d) {infinite or not), with a 
non-negative weight function q{x), then {(/>n{x)} is a set of Jacobi 
polynomials. 
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