ON DERIVATIVES OF ORTHOGONAL POLYNOMIALS*

BY H. L. KRALL

1. Introduction. A set $\phi_{0}(x)=1, \phi_{1}(x), \phi_{2}(x)$ of polynomials of degrees $0,1,2, \cdots$, is called a set of orthogonal polynomials if they satisfy

$$
\int_{a}^{b} \phi_{m}(x) \phi_{n}(x) d \psi(x)=0, \quad \int_{a}^{b} d \psi(x)>0, \quad(m \neq n)
$$

where $\psi(x)$ is a non-decreasing function of bounded variation. There is no restriction in assuming the highest coefficient 1.

It has been shown by W. Hahn \dagger that if the derivatives also form a set of orthogonal polynomials, then the original set were Jacobi, Hermite, or Laguerre polynomials. His method consisted in showing that the polynomials satisfy a differential equation of the type

$$
\left(a+b x+c x^{2}\right) \phi_{n}^{\prime \prime}+(d+e x) \phi_{n}^{\prime}+\lambda_{n} \phi_{n}=0
$$

From this it followed that the set were Jacobi, Hermite, or Laguerre polynomials.

Here we propose to give a new proof of this result, our point of view being to answer the question: What conditions on the weight function result from assuming that both $\left\{\phi_{n}(x)\right\}$ and $\left\{\phi_{n}{ }^{\prime}(x)\right\}$ are sets of orthogonal polynomials? However, we shall assume that (a, b) is a finite interval and $d \psi(x)=p(x) d x, \ddagger$ where the weight function is L-integrable.
2. A Relation for the Weight Function $q(x)$. Let the set $\left\{\phi_{n}{ }^{\prime}(x)\right\}$ be orthogonal in the interval (c, d), infinite or not, with the weight function $q(x)$, that is,

$$
\int_{c}^{d} q(x) \phi_{n}^{\prime}(x) \phi_{m}^{\prime}(x) d x=0, \quad(m \neq n)
$$

[^0]The polynomials $\left\{\phi_{n}(x)\right\},\left\{\phi_{n}{ }^{\prime}(x)\right\}$ satisfy the recurrence relations,*

$$
\begin{aligned}
\phi_{n+2}(x) & =\left(x-c_{n+2}\right) \phi_{n+1}(x)-\lambda_{n+2} \phi_{n}(x) \\
\frac{1}{n+2} \phi_{n+2}^{\prime}(x)= & \frac{x-c_{n+2}^{\prime}}{n+1} \phi_{n+1}^{\prime}(x)-\lambda_{n+2}^{\prime} \phi_{n}^{\prime}(x) \\
& \left(n \geqq 0 ; c_{n}, c_{n}^{\prime}, \lambda_{n}, \lambda_{n}^{\prime}\right. \text { constants) }
\end{aligned}
$$

Differentiating both sides of the first relation and eliminating the term containing x, by means of the second relation, we get

$$
\begin{aligned}
\phi_{n+1}(x)=\frac{1}{n+2} \phi_{n+2}^{\prime}(x)+c_{n+2}^{\prime \prime} \phi_{n+1}^{\prime}(x)+ & \lambda_{n+2}^{\prime \prime} \phi_{n}^{\prime}(x) \\
& \left(c_{n}^{\prime \prime}, \lambda_{n}^{\prime \prime} \text { constants }\right) .
\end{aligned}
$$

Remembering that $\phi_{n}{ }^{\prime}(x)$, with the weight function $q(x)$, is orthogonal to any polynomial of degree $\leqq n-2$, we get

$$
\begin{equation*}
\int_{c}^{d} q(x) \phi_{n+1}(x) G_{n-2}(x) d x=0 \tag{1}
\end{equation*}
$$

where $G_{n}(x)$ is an arbitrary polynomial of degree $\leqq n$.
Lemma. Let $Q(x)$ be non-negative in (c, d), and such that the numbers

$$
\beta_{k}=\int_{c}^{d} Q(x) x^{k} d x, \quad(k=0,1, \cdots)
$$

exist, and for a certain positive integer r

$$
\begin{equation*}
\int_{c}^{d} Q(x) \phi_{n}(x) G_{n-r-1}(x) d x=0, \quad(n=r+1, r+2, \cdots) \tag{2}
\end{equation*}
$$

Then almost everywhere

$$
Q(x)=\left\{\begin{array}{cl}
P_{r}(x) p(x) & \text { in }(a, b) \\
0 & \text { elsewhere }
\end{array}\right.
$$

where $P_{r}(x)$ is a polynomial of degree $\leqq r$.
Consider the function

[^1]$$
R(x)=\left(u_{0}+u_{1} x+u_{2} x^{2}+\cdots+u_{r} x^{r}\right) p(x) .
$$

We determine the $\left\{u_{i}\right\}$ so that

$$
\int_{a}^{b} R(x) x^{i} d x=\int_{a}^{d} Q(x) x^{i} d x, \quad(i=0,1, \cdots, r)
$$

that is, the u_{i} satisfy the equations

$$
\begin{gathered}
\alpha_{0} u_{0}+\alpha_{1} u_{1}+\cdots+\alpha_{r} u_{r}=\beta_{0}, \\
\alpha_{1} u_{0}+\alpha_{2} u_{1}+\cdots+\alpha_{r+1} u_{r}=\beta_{1}, \\
\cdot \cdot \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot \\
\alpha_{r} u_{0}+\alpha_{r+1} u_{1}+\cdots+\alpha_{2 r} u_{r}=\beta_{r},
\end{gathered}
$$

where

$$
\alpha_{k}=\int_{a}^{b} x^{k} p(x) d x .
$$

This is always possible for the determinant of this system is known to be positive.* Now \dagger

$$
0=\int_{a}^{b} R(x) \phi_{r+i}(x) d x=\int_{c}^{d} Q(x) \phi_{r+i}(x) d x, \quad(i=1,2, \cdots)
$$

And then

$$
\int_{a}^{b} R(x) x^{i} d x=\int_{c}^{d} Q(x) x^{i} d x, \quad(i=0,1,2, \cdots) .
$$

Let
$f(x)=\left\{\begin{array}{c}Q(x)-R(x) \text { in } E_{1}, \text { the points where }(a, b) \text { and }(c, d) \text { overlap, } \\ -R(x) \text { in } E_{2}, \text { the remainder of }(a, b), \\ Q(x) \text { in } E_{3}, \text { the remainder of }(c, d) .\end{array}\right.$
Then

$$
\int_{E_{1}+E_{2}+E_{3}} f(x) x^{i} d x=0, \quad(i=0,1,2, \cdots)
$$

If (c, d) is finite, $f(x)$ must be zero almost everywhere, and our

* See Shohat, loc. cit., p. 9, formula (19).
\dagger As a special case, take in (2), $n=r+i$; that is, $\int_{c}^{d} Q(x) \phi_{r+i}(x) G_{i-1}(x) d x=0$, then take $G_{i-1}(x) \equiv 1$.
lemma follows. Moreover, from the above definition of $f(x)$, we conclude that $R(x)$, hence $p(x), \equiv 0$ almost everywhere in E_{3}, so that both intervals (a, b) and (c, d) may be reduced to their common part E_{1}; in other words, here we may take $(c, d) \equiv(a, b)$. If (c, d) is infinite, let $A=\max (|a|,|b|)$, so that $|x| \leqq A$ in $E_{1}+E_{2}$, which is identical with (a, b), and let E_{4} be the part of E_{3} for which $|x| \geqq(1+\alpha) A$, where $\alpha>0$ is arbitrary. If $Q(x) \geqq 0$, we have

$$
\begin{aligned}
(1+\alpha)^{i} A^{i} \int_{E_{4}} Q(x) d x & \leqq \int_{E_{3}} Q(x) x^{i} d x=\left|\int_{E_{1+E_{2}}} f(x) x^{i} d x\right| \\
& \leqq A^{i} \int_{E_{1}+E_{2}}|f(x)| d x \\
(1+\alpha)^{i} & \leqq \frac{\int_{E_{1}+E_{2}}|f(x)| d x}{\int_{E_{4}} Q(x) d x}
\end{aligned}
$$

for all even i, which is impossible unless $Q(x)$ is zero almost everywhere in E_{4}. Hence (c, d) reduces to $E_{1}+E_{3}-E_{4}$ and in $(c, d),|x|<(1+\alpha) A$; that is, in view of the arbitrariness of $\alpha(>0)$,

$$
|x| \text { in }(c, d) \leqq A=\max (|a|,|b|)
$$

which requires that $(c, d) \equiv(a, b)$. The following important result has been established: (c, d) is finite and coincides with (a, b).

With this lemma, it follows from (1) that

$$
\begin{equation*}
q(x)=\left(r x^{2}+s x+t\right) p(x) \tag{3}
\end{equation*}
$$

and we may take $c=a, d=b$.
3. Existence of $q^{\prime}(x)$. Consider the function

$$
S(x)=k \int_{a}^{x}(x-l) p(x) d x
$$

where k and l are such that $S(b)=0, \int_{a}^{b} S(x) d x=\int_{a}^{b} q(x) d x$. An integration by parts applied to $\int_{a}^{b} S(x) \phi_{n+1}^{\prime}(x) d x$ gives, since $S(a)=S(b)=0$,

$$
\int_{a}^{b} S(x) \phi_{n+1}^{\prime}(x) d x=\int_{a}^{b} \phi_{n+1}(x) k(x-l) p(x) d x=0, \quad(n \geqq 1)
$$

But $q(x)$ is the weight function for the orthogonal polynomials $\left\{\phi_{n}^{\prime}(x)\right\}$, whence

$$
\int_{a}^{b} S(x) \phi_{n+1}^{\prime}(x) d x=\int_{a}^{b} q(x) \phi_{n+1}^{\prime}(x) d x=0, \quad(n \geqq 1) .
$$

This and the relation $\int_{a}^{b} S(x) d x=\int_{a}^{b} q(x) d x$ gives

$$
\int_{a}^{b} S(x) x^{n} d x=\int_{a}^{b} q(x) x^{n} d x, \quad(n \geqq 0)
$$

and then $q(x)=S(x)$ almost everywhere. Since $S(x)$ has a derivative almost everywhere, $q(x)$ has a derivative almost everywhere and

$$
\begin{equation*}
q^{\prime}(x)=k(x-l) p(x), \quad q(a)=q(b)=0 \tag{4}
\end{equation*}
$$

4. Discussion of $q(x)$ and $p(x)$. Dividing (4) by (3), we get

$$
\begin{equation*}
\frac{q^{\prime}(x)}{q(x)}=\frac{k(x-l)}{r x^{2}+s x+t}, \quad q(a)=q(b)=0 \tag{5}
\end{equation*}
$$

We proceed to show (i) $r x^{2}+s x+t$ has real zeros, (ii) $r \neq 0$. (i) Assume $r x^{2}+s x+t$ has imaginary zeros. Integrating the differential equation (5), we get

$$
\begin{aligned}
& \log q(x)=\int \frac{k(x-l)}{r x^{2}+s x+t} d x+c \\
& q(x)=K\left(r x^{2}+s x+t\right)^{\alpha} e^{\beta \arctan (\gamma x+\delta)} \\
&(\alpha, \beta, \gamma, \delta, K \text { constants })
\end{aligned}
$$

This is incompatible with $q(a)=q(b)=0$. (ii) Assume first $r=s=0$. Equation (5) becomes

$$
\begin{aligned}
q^{\prime}(x) & =(2 \alpha x+\beta) q(x), \\
q(x) & =K e^{\alpha x^{2}+\beta x}, \quad(\alpha, \beta, K \text { constants })
\end{aligned}
$$

which is not zero at a and b.
Next, suppose $r=0, s \neq 0$. Equation (5) gives

$$
\begin{aligned}
\frac{q^{\prime}(x)}{q(x)} & =\frac{k(x-l)}{s x+t}=\alpha+\frac{\beta s}{s x+t} \\
q(x) & =K(s x+t)^{\beta} e^{\alpha x}, \quad(\alpha, \beta, K \text { constants })
\end{aligned}
$$

This cannot vanish at both end points, $x=a$ and $x=b$.
Having thus proved (i) and (ii), we set

$$
r x^{2}+s x+t=r(x-g)(x-h), \quad(r \neq 0, g, h \text { real })
$$

and rewrite (5) as follows:

$$
\frac{q^{\prime}(x)}{q(x)}=\frac{k(x-l)}{r x^{2}+s x+t}=\frac{\alpha}{x-g}+\frac{\beta}{x-h}
$$

whence

$$
q(x)=K(x-g)^{\alpha}(x-h)^{\beta}, \quad(K, \alpha, \beta, \text { constants })
$$

The conditions $q(a)=q(b)=0$ demand that $g=a, h=b$, so that finally (disregarding inconsequential constant factors)

$$
q(x)=-r(x-a)^{\alpha}(b-x)^{\beta}
$$

And then from (3)

$$
\begin{aligned}
& p(x)=\frac{q(x)}{r x^{2}+s x+t}=\frac{r(x-a)^{\alpha}(b-x)^{\beta}}{r(x-a)(b-x)} \\
& p(x)=(x-a)^{\alpha-1}(b-x)^{\beta-1}
\end{aligned}
$$

and we can see that α, β are both >0.
5. Conclusion. Since this is the weight function for Jacobi polynomials, we have thus established the following theorem.

Theorem. If $\left\{\phi_{n}(x)\right\}$ is a set of orthogonal polynomials with the weight function $p(x)$ in the finite interval (a, b), and if we assume that the derivatives $\left\{\phi_{n}{ }^{\prime}(x)\right\}$ also form a set of orthogonal polynomials in a certain interval (c, d) (infinite or not), with a non-negative weight function $q(x)$, then $\left\{\phi_{n}(x)\right\}$ is a set of Jacobi polynomials.

[^2]
[^0]: * Presented to the Society, April 11, 1936.
 \dagger W. Hahn, Über die Jacobischen Polynome und zwei verwandte Polynomklassen, Mathematische Zeitschrift, vol. 39 (1935), pp. 634-638.
 \ddagger Professor Shohat informs me that he has discussed the general case $d \psi(x)$.

[^1]: * J. Shohat, Théorie Générale des Polynomes Orthogonaux de Tchebichef, Mémorial des Sciences Mathématiques, p. 24.

[^2]: Pennsylvania State College

