
SOME R E C E N T INVESTIGATIONS CONCERNING 
T H E SECTIONS OF POWER SERIES AND 

RELATED DEVELOPMENTS* 

BY GABRIEL SZEGÖ 

1. Introduction. The definition of analytic functions given by 
Weierstrass is based primarily on the notion of power series. 
Numerous results and questions of the modern theory of these 
functions can be formulated as definite relations between the 
coefficients of a power series and the values of the corresponding 
function inside or outside of the circle of convergence or on this 
circle itself. Analogous questions may be raised concerning 
trigonometric series. In what follows a short report of some 
recent investigations in this direction will be given. The vast-
ness of this field makes it impossible to be complete. Thus we 
point out mainly the typical methods used and the most char
acteristic results, f 

2. Problem. We consider the set or the class of power series 

(1) co + ciz + c2z
2 + . • • + cnz

n + • • • 

convergent in a circle of the complex z plane (say for \z\ < 1) and 
satisfying some conditions there, say C. In a very general formu
lation the problem is to find necessary and sufficient conditions 
in terms of the coefficients cn in order that the function f(z) 
represented by (1) should satisfy the condition C. This problem 
has been solved in a more or less applicable form only for some 
special classes of power series. In 1911 Carathéodory [ l] and 
Toeplitz [39 ] obtained a condition of this kind for power series 
f(z) with a positive real part in the unit circle. Their condition 
has a "quasi-algebraic" character, containing an infinite number 
of algebraic conditions. A second very important class, that of 
power series remaining bounded in the unit circle, |/(X)| t^M, 
can be reduced, at least in principle, to the class mentioned 

* An address delivered a t the meeting of the Society on January 1, 1936, 
in St. Louis, by invitation of the Program Committee. 

t Some of the older results referred to in this paper are contained in a 
previous report on this subject. See [34] in the list of references given at the 
end of the paper. 
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[Carathéodory and Fejér, 2] . This reduction gives a possibility 
of characterizing the boundedness property again by some con
ditions in terms of the coefficients. In 1917 Schur [27] gave a 
very elegant algebraic form for these conditions. 

Apart from these special classes and some other classes more 
or less connected with them, it is rather hopeless to expect an 
exhaustive solution of this problem. For instance, we do not 
know the necessary and sufficient conditions in terms of the co
efficients in order that ƒ (z) should be a simple or univalent func
tion in the unit circle. Therefore we confine ourselves to a more 
special question asking for some properties of the coefficients cn 

or of the terms cnz
n of the power series (1), or more generally 

of some linear combinations of these terms which are implied 
by the condition C in question. This problem is not at all trivial 
even for the classes mentioned before. In principle the algebraic 
characterization of the coefficients yields, of course, a method of 
attacking the problem; this, however, only in principle, and the 
effective determination of some maxima or minima connected 
with the coefficients can be an extremely difficult algebraic task. 

It should be emphasized that historically these problems have 
originated in some questions concerning ordinary Fourier series. 
It suffices to mention only two questions of this sort which have 
become rather classical nowadays. The first is the problem of 
Lebesgue, to determine the maximum of the nth. section of the 
Fourier series of all functions remaining ^ 1 in absolute value.* 
These maxima, called Lebesgue constants, gained a particular 
importance through the investigations of Lebesgue, showing 
that the unboundedness of these constants is the deeper cause 
of the existence of continuous functions with divergent Fourier 
series. Another question is Carathéodory's problem of charac
terizing the Fourier constants of a positive real function, a prob
lem closely related to that mentioned above regarding analytic 
functions with a positive real part in the unit circle. 

3. Bounded Functions. Coefficients, Partial Sums, and Cesàro 

* H. Lebesgue, Sur la divergence et la convergence non-uniforme des séries de 
Fourier, Comptes Rendus, vol. 141 (1905), pp. 875-877; Leçons sur les Séries 
Trigonométriques, (1906), art . 45, 46, pp. 86-88. See also A. Haar, Zur Theorie 
der orthogonalen Funktionensysterne, Mathematische Annalen, vol. 69 (1910), 
pp. 331-371. 
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Means. Returning to the complex problem, let us consider in 
a more detailed way the set of power series ƒ(z) satisfying the 
special condition E: \f(z)\ ^ 1 in \z\ < 1 . For the sake of con
venience we choose for the upper bound M—\. Cauchy's in
tegral representation of the coefficients furnishes, then, the in
equalities \cn\ ^ 1 for all values of n. The bound 1 is of course 
the best possible since ƒ (z) = 1 satisfies condition E. Much more 
holds, however, namely, that the sum 

(2) |co | 2 + | c i | 2 + | c 2 | 2 + • • • + | c n | 2 + • • . 

is convergent and also :gl . This incidentally is the case for a 
more extensive class of power series, namely, for the functions 
f(z) regular in \z\ < 1 and satisfying there the condition 

(3) — f | f(re^)\H<j> ^ 1, (r < 1). 

We return to this class and to related classes in §11. 
So much about the limitation of the coefficients or, what is 

the same, of the single terms. The question arises now what can 
be said about the partial sums or sections 

(4) sn(z) = Co + ciz + c2z
2 + • • • + cnz

n 

of a power series of class E if \z\ ^ 1. 
The exact maximum of \sn(z) \ in |z | ^ 1 uniformly for the 

whole class E was determined by Landau [ ló] in the explicit 
form 

» /1-3 • • • (2v - 1)V 
<S) ' + S( ,.4-2, )• 
This expression becomes oo for ^—>oo, a fact which is in close 
relation to a previous result of Fejér [5], stating the existence 
of functions with the property E whose partial sums are un
bounded in \z\ < 1 . In particular, if ƒ(z) has the property E in 
\z\ < 1 , the partial sums do not have the same property neces
sarily in \z\ < 1 . 

These results suggest the question of determining the exact 
maximum or, at any rate, proper upper bounds for a given linear 
combination 

(6) Ln(z) = \0co + Xi(ciz) + X2(c22
2) + • • • + K(cnz

n) 
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of the first n + 1 terms of a function ƒ(z) of class E; here z ranges 
over the unit circle, |z | :§1. A very important linear combina
tion of this kind has been pointed out by Fejér [ó], who proved 
that the Cesàro means of (1) satisfy the same condition E as 
the function itself. Denoting these means by <rn(z), we have 

So(z) + si(z) + s2(z) + • • • + sn(z) _ Sn(z) 

n+1 n+1 

en-— r̂W 
,=o \ n + 1/ 

and the inequalities |a"n(js)| g 1 hold for| s| ^ 1 , (n = 0, 1, 2, • • • ). 
This result has, also, a parallel in the theory of Fourier series. 
I t reminds us of the analogous, nowadays classical, property of 
the Cesàro means of Fourier series likewise due to Fejér.* The 
converse of the theorem is also true : The function ƒ (z) has the 
property E in \z\ < 1, if and only if the same is valid for all the 
Cesàro means an(z) in | z\ ^ 1. 

4. Continuation. Linear Combinations. Various methods have 
been developed in order to obtain proper upper bounds for the 
linear combination Ln(z) in (6) if f(z) is in E and \z\ g 1. 

(a) Landau's method was extended by Szâsz [31 ], giving an 
upper bound for Ln{z) in each case, and even obtaining the exact 
maximum if a certain algebraic condition is satisfied. Assuming 
X „ ^ 0 w e develop the expression 

(X» + \n-lX + \n-2X* + • ' • + A0*")1/2 

(with an arbitrary determination of the square root) in a power 
series Mo+Mi^+M2^2+ * * * ; the finite sum 

|MO|2 + |MI | 2 + U 2 | 2 + • • • + U » | 2 

then furnishes the upper bound mentioned. In the particular 
case when the polynomial Mo+Mi^+ • * • +^nZn is different from 
0 in I 2J < 1, this is the exact maximum in question. 

From this general theorem Landau's result (X„ = l) and 
FejéVs result Çkv = l—v/{n + l)) can be easily obtained. 

(b) In a joint investigation with Schur [29], we gave an-

* Untersuchungen über Fouriersche Reihen, Mathematische Annalen, vol. 58 
(1904), pp. 51-69; especially p. 60. 

<rn(z) 

(7) 

file:///n-lX
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other method, in principle very elementary, of obtaining linear 
combinations (6) remaining ^ 1 in \z\ ^ 1 , that is, having the 
same property E as the function itself. This is, namely, the 
case if the coefficients X„ are real, Ao = l, and the trigonometric 
polynomial 

1 
(8) T(<j>) = —- + Xi cos 0 + X2 cos 2<f) + • * * + Xn cos n$ 

assumes only non-negative values for all real values of 0. This 
follows readily from the representation 

(9) Ln(z) = Ln(re») = — f f(re^)T(d - <j>)d<t>, (r < 1). 

(c) In several investigations of a related kind a third method 
has been used, based on FejéVs result concerning the Cesàro 
means. Introducing in (6) for cvz

v the expression sv(z) — s„_i(V) 
and for sv(z) the difference Sv(z) ~Sv-i(z) [see (7) ], we obtain, for 

n—2 

(10) Ln{z) = E (X„ - 2X,+i + K+z)S,(z) 

+ (Xn-1 — 2\n)Sn-l(z) + \nSn(z). 
Hence 

w-2 

I Ln(z) I ^ X) I ^ ~ 2X,^i + X„+21 0 + 1) 
(11) ?=o 

+ I Xn_i — 2Xn I » + I Xn I O + 1) 

follows. This bound in general is not the exact maximum. It is 
attained by the function ƒ(z) =€ = const., | e| = 1 , provided the 
X„ are all real and the following inequalities hold 

X, - 2X,+i + X„+2 ^ 0, (y = 0, 1, 2, • • • , n - 2), 

Xn-i - 2Xn ^ 0, Xn ^ 0. 

The maximum appearing on the right side is then =Xo-* 
The same method can be used to prove the non-negativeness 

of the trigonometric polynomial (8) if the conditions (12) are 
satisfied [Fejér, 11]. Thus in this case the condition mentioned 
in (b) is also satisfied. 

* Concerning this method see in addition Fejér [ l0] . 
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By means of one or the other of these methods numerous in
teresting results have recently been obtained for power series of 
class E. A short enumeration of the most typical theorems of 
this kind will be given now. 

5. A Theorem of Fejêr and Rogosinski. These authors have 
proved independently of each other [7, 24] that all partial sums 
of a power series of class E in \z\ < 1 are of class E in \z\ < 1/2, 
that is, they remain ^ 1 in absolute value there. This radius 1/2 
is here the best possible; in general it cannot be replaced by a 
larger one. 

This theorem is surprising because in the unit circle itself the 
partial sums of proper functions of class E become arbitrarily 
large (see §3). 

The proof can be based, for instance, on the method (b) 
[Landau, 17]. Indeed, the statement is equivalent to 

(13) | co + 2~lclZ + 2-V2s2 + • • • + 2~ncnz
n\ ^ 1, ( | z\ g 1). 

Thus we have here \v = 2~v and conditions (12) are satisfied be
cause 

X, - 2X„+i + X.+2 = 2~v - 2~v + 2-"~2 = 2-"-2 > 0, 

Xn_! - 2Xn = 2--+1 - 2-"+ 1 = 0, \n = 2~n > 0. 

Moreover, functions of the type 

z + a 
— = a + ( l - | a | 2 ) 2 + • • • 
1 + ÔLZ 

satisfy condition E in \z\ < 1 if \a\ < 1 . Choosing any point / 
with 1/2 < 11\ < 1 and taking arg a = arg /, we have 

I a + (1 - I a |2)/1 =- I a I + (1 - I « |2) J /1 > 1, 

or (l + | a | ) | / | > 1 provided that \a\ is sufficiently near to 1. 

6. A Theorem of I. Schur and Szegö. In a joint investigation 
with Schur [29] we noticed the fact that the preceding state
ment that 1/2 is the "best" constant of the last theorem, is 
true only if the totality of all partial sums is considered. Leaving 
out of consideration the section n — 1 and taking only the sec
tions sn(z) with n^2, a larger circle with the same property, 
namely, |z | ^ (3/8) 1/2 = 0.6123 . . . , can be determined. Here the 
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number (3/8)112 is again the best possible. This leads to the gen
eral problem of determining the greatest circle \z\ ^rn in which 
all the partial sums beginning with the nth. satisfy the same 
boundedness condition as the function. Jointly with Schur, we 
gave an algebraic method to calculate those numbers, and 
proved that rn\ 1. A direct computation shows 

(14) f l = 0.5, r2 = 0.6123 • • • , r3 = 0.6478 • • • , r4 = 0.7204 

Furthermore, we found a simple asymptotic formula for rn if 

log n - log log n + log 2 + en 

(15) rn = 1 ; (e»-»0). 
n 

This means that the "singular" behavior of the nth partial sum 
(to be > 1 in absolute value) can appear only in a small strip 
around the unit circle whose width asymptotically —n~l log n if 
n is large. 

If the partial sums are replaced by the Cesàro means, the 
corresponding numbers all are = 1 (see §3). As a generalization 
of the partial sums and the Cesàro means the general Cesàro 
means s^k)(z) can be now introduced. Thus we can determine a 
definite circle \z\ ^rn

(k) (the greatest of this kind) in which all 
the Cesàro means sm

{h)(z), (vn^n), of all functions ƒ(z) of class 
E are also of class E. Here the order k is between 0 and 1. The 
determination or characterization of these numbers rn

(k) seems 
to bç difficult. We proved only [29, pp. 556-558] that 

(16) f!<*> = 
k + 1 

7. A Theorem of Rogosinski and Szegö. Recalling again the 
fundamental property of the Cesàro means mentioned in §3, we 
notice that they are built up from all partial sums from the 0th 
to the ^th. Thus the question arises to find some simple linear 
combinations of the n first terms expressible by some values of 
the ^th partial sum alone, and having the same boundedness 
property as the Cesàro means or at any rate remaining bounded 
for n—>co. In a joint investigation with Rogosinski [25] we 
considered expressions of the form 

(17) Asn{zea'n) + Bsn(zeh,n), 
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A, B, a, b being given complex constants. The problem is to de
termine the values of these constants for which this expression 
remains bounded, uniformly for all n, for all \z\ ^ 1 and for all 
functions of class E. A necessary and sufficient condition which 
we obtained for this property is the equation 

(18) Aea + Beb = 0. 

The exact bound depends in general on the given constants. 
The proof of the boundedness can be readily given by means of 
method (c). The determination of the exact bound in the case 
(1) below has been carried out by means of (a). 

This question has its origin likewise in some analogous prob
lems concerning Fourier series.* 

Two special cases should be mentioned: 
(1) a and b are both pure imaginary, 
(2) a and b are both real. 

In case (1) our expression becomes, after multiplication by a 
proper constant and a proper rotation of the unit circle, 

(19) eiasn(ze-ialn)-e-iasn(zeialn), 

a being a fixed real number. Here we obtained for 0 < a ^ 7 r / 2 , 
the exact bound 2f"[j0(x)]2dx, J0(x) being Bessel's function of 
order O.f This statement is equivalent to the interesting in
equality 

< I sin a J l [Mx)]'dx, 
J o 

( | * | ^ 1 ; * = 0 , 1 , 2 , . . . ) . 

Here the right side cannot be replaced by a smaller number. For 
a—*0 we obtain again FejéVs theorem concerning Cesàro 
means. % 

* See W. Rogosinski, Reihensummierung durch Abschnittskoppelungen, 
Mathematische Zeitschrift, vol. 25 (1926), pp. 132-149. 

t In a subsequent paper [36] I proved that this is true for all values of a, 
a > 0 . 

î Szâsz had previously considered [31 ] this linear combination and applied 
method (a) without discussing the question of the maximum. 

(20) 

sin I 1 )a 
\ n+lj 

cvz
v 

sin a 
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We have, for instance, for a = 7r/2, 

1 1 1 

— I *n(s<r-*''<2n>) + sn(se**'<2n>) I 

< I [Jo(x)]2dx = 1.0777 
•/ n 

The last number cannot be replaced by a smaller one. 
In case (2) we obtain the inequality 

(21) I sn(pz) - p"sn(z) | ^ 1 — p- , (0 < p < 1), 

which can be also written in the form 

(22) Z cvz' 
,-o 1 - pB 

S 1, ( \z g 1;» = 0 , 1 , 2 , - - - ) . 

Hence Fejér's theorem arises again as a limiting case for p—>1. 
Among others we made the following curious conclusion from 
this inequality. Supposing |sn(;s)| S 1 is true at a point z = Zo 
somewhere in the unit circle for the ^th section of a fixed func
tion of our class, then the same will be true on the whole seg
ment Ozo, connecting s0 with the origin. Or, the set of all points 
in the unit circle in which a particular section of a particular 
function of our class is ^ 1 in absolute value defines a so-called 
star-shaped region. (Of course this always contains the origin.) 

8. Another Average of Sections. A further remarkable property 
of the partial sums of the same class is that the mean value along 
any segment starting from the origin 

(23) z~l \ sn(t)dt, ( 1 * 1 ^ 1 ) , 

is ^ 1 in absolute value, or it belongs to the same class as the 
function ƒ(z) itself [25]. This property is not at all trivial; it 
depends on the non-negativeness of the trigonometric polyno
mials 

1 1 1 1 
(24) 1 cos 6 -\ cos 26 + • • • H cos no, 

2 2 3 n+1 
the proof of which is rather troublesome [25, §5]. (The method 
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of Fejér [ i l ] needs here an essential modification.) From this 
fact the statement follows easily by means of method (b). 

9. Harmonic Functions. If the condition \f(z) | ^ 1 is replaced 
by %f(z) > 0 , analogous properties can be studied. If the function 
is normalized by the condition ^ / ( 0 ) = 1 , the exact inequalities 
\cn\ ^ 2 , (n = l, 2, 3, • • • ), hold [Carathéodory, l ] . The analog 
of Landau's problem has been treated by Schur [28]. He ob
tained for the real part of the nth section a minimal value in 
\z\ g l which divided by n tends to min (2 sin x/x) for n—>oo 
(provided that the normalization %f(Q) = 1 has been made). 
Moreover the theorem in §5 concerning the circle \z\ ^ 1 / 2 re
mains valid and the assertion about the numbers rn of §6 can 
similarly be taken over word for word. The inequalities (21) and 
(23) have likewise their exact analogs for this class. 

The theory of analytic functions with a positive real part is 
equivalent to that of positive harmonic functions. Thus the pre
ceding results can be formulated also in terms of positive har
monic functions regular in the unit circle. If this is done the 
formulation of corresponding questions in space for develop
ments in terms of spherical harmonics becomes possible. The 
analog of Schur's theorem formulated above holds for these 
developments [Szegö, 33, §4] with n replaced by n2 and the 
minimal value by min (2Ji(x)/x), where Ji(x) denotes Bessel's 
function of order 1. Instead of ri = l /2 we obtain in this three-
dimensional case the number ri — 1/3 [Szegö, 33, §5], a result 
connected with an older remark of Pick [22],* and we can in
troduce the analog of the numbers rn too. The exact determina
tion of these new numbers rn and the proof that they increase 
seems, however, to be extremely complicated. The asymptotic 
determination is still possible in a form somewhat different 
from that in the two-dimensional case. I have found recently 
[37] 

(25) , „ = l - 2 l 0 g W ~ l 0 g l 0 g W + 7 + 6", („-+0). 

* Montel has recently published [Comptes Rendus, vol. 201 (1935), pp. 
119-121] a note on this subject, rediscovering Pick's theorem as well as re
lated estimates for the nth. term of the development in spherical harmonics 
[Szegö, 33, §3]. He does not refer to the older literature. 
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Here 7 = log 2 if n is odd, and 7 = log (2/JL) if n is even, while 
fx = 0.4028 • • • denotes the maximum of — Jo(x) for all real 
values of x. 

10. Polynomials. Various extremal problems treated before 
can be sharpened if we consider instead of the whole class 
I ƒ (z) I rg 1 or tRJiz) > 0 the subset of polynomials of a given de
gree N satisfying one of these conditions in the unit circle. 
The same is true for developments in terms of spherical har
monics. In case of functions with a positive real part Carathéo-
dory's inequalities (see §9) can be replaced by 

(26) I cn I ^ 2 cos / \ , 

(n = 1, 2, • • • , N; c0 = 1) 

[Egervâry, Lukâcs, and Szâsz; see Szegö, 33, pp. 624-626]. 
Sidon [30] observed for the same class that the circle 
|z | S [2 cos(7r/(iV+2))]-1, instead of |*| ^ 1 / 2 , has the prop
erty mentioned in §9. Recently Levin [18] has obtained sev
eral results in this direction for polynomials belonging to class 
E. As regards three-dimensional problems of this kind see Szegö 
[33, pp. 626-632]. 

11. Mean Value Conditions. A rather obvious generalization 
of the boundedness property is the restriction that the integral 
mean value 

( \ (*+v \ ifp 

(27) | — J I/(re*) |*</0| 

remain bounded for r < l , f(z) being a given function regular 
for I 21 < 1 . Here p denotes a fixed positive number. This con
dition, assuming the bound to be equal to 1, defines a class Ev. 
The limiting case E^ is the class E discussed before. The class E2 

can be characterized by the condition that the sum (2) of 
squares of the coefficients is convergent and ^ 1 . Therefore in 
this case it is not difficult to carry out an algebraic treatment 
of various questions concerning the terms, partial sums, linear 
combinations of terms, and so on. 
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More difficult is the treatment of the class E\ corresponding to 
Hardy's mean value.* Numerous questions concerning coeffi
cients, sections, and related topics can be discussed here by 
using the following theorem due to Fekete and M. Riesz.f 

A function f(z) belongs to E\ if and only if it can be written in 
the f or m f(z) = g(z)h(z), where both functions g{z) and h{z) belong 
toE2. 

This leads to the following parametric representation of the 
coefficients of ƒ (z) : 

Cn = U0Vn + «iVn-1 + • • • + UnV0, ( » = 0, 1, 2 , • • • ) . 

(28) è | «»Mi , Z k l 2 g i . 
It is easy to show the existence of some numbers rn depending 

only on n such that the partial sums of degree ^ n have a Hardy 
mean value ^ 1 for r ̂  rn provided that the corresponding 
mean value of the function in the unit circle is ^ 1, or else such 
that sm(z), (m^n), belong to class E± in \z\ ^rn if f(z) belongs 
to Ei in | is| < 1 . The number rn should be here, of course, the 
largest possible. The determination of these numbers, unlike 
that in the limiting case E^, seems here to be rather difficult; 
their asymptotic determination may be less intricate although 
it has not been carried through as yet. 

Using the representation (28) I have calculated the largest 
number r0 for which 

1 r + 7 r 

(29) — | *i(ro*«*) | <ty ^ 1. 
2irJ-T 

The result is ro = (2/x1/2)-1 = 0.9146 • • • , where fx is the maximum 
of the function 

* G. H. Hardy, The mean value of the modulus of an analytic function, Pro
ceedings of the London Mathematical Society (2), vol. 14 (1915), pp. 269-277. 

t Verbal communication. The proof can be based on the following facts: 
(i) Any function ƒ(z) of class Ei regular in | z \ S1 can be written in the form 
f(z)=l(z)q(z), l(z) being a rational function regular and with | / ( s ) | < l i n 
|2 | < 1 , q(z) a regular function of class E\ and 5^0 in | s | < 1 . (ii) From any set 
of functions \fv(z)} belonging to E2 a subset can be selected which is uniformly 
convergent in any circle | z | ^r, (r < 1 ) . Another direct (but less elementary) 
way would be to make use of the factorization theorem of F . Riesz, Mathe
matische Zeitschrift, vol. 18 (1923), pp. 87-95. 
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(30) x~2(Ti-1 f (1 + x2 - 2x cos (j>y'2d<j> - 1J 

for x > l , or the maximum of 

(31) (sin o:/2)2(cos a/2)-4(E(sin a) - (sin a/2)2) 

for 0 <a<ir/2, and -E(fe) denotes Legendre's elliptic integral of 
the second kind 

2 r T / 2 

(32) E(k) = — (1 - k2sm2<t>)ll2d^. 
TT J Q 

These results show that all these questions have a more compli
cated character than in the case E^. 

12. Univalent Bounded Functions. A very interesting subset 
of E = EO0 can be obtained by imposing upon ƒ (z) the additional 
condition to be univalent or simple in the unit circle |z | < 1 . 
Fejér [8, see also 9] proved that the partial sums of a power 
series of this kind remain uniformly bounded in \z\ < 1. He ob
tained by application of his Cesàro mean theorem the bound 
1.7071 • • • . Using (20') I found [35, §3] a better estimate 
1.6160 • • • . Recently Levin [18, §4] succeeded in improving 
this result; the exact bound, however, is not known as yet. 

In all these investigations the univalency of the function is 
used only to a very moderate extent, namely, in the following 
form: The area of the w-set in the conformai representation 
w=f(z) corresponding to \z\ < 1 is ^7r, whence 

(33) \c1\
2 + 2\c2\

2 + 3\cs\2+ • • • +n\cn\
2+ • • • £ 1. 

The results mentioned remain valid for the larger subset of E 
satisfying this condition. Levin investigated [18, §3] some gen
eralizations of this class requiring, besides E, the inequality 

(34) *i\ d\2 + a2\ c2\
2 + • • • +*n\cn\

2+ • • • ^ 1, 

where \an} is a given sequence of positive numbers. 

13. Univalent Functions. Another rather complicated class is 
that of the univalent functions (without the condition E). The 
best known general limitation for the coefficients has been ob
tained by Littlewood [19, pp. 498-499]. It is: \cn\ <en pro
vided that £i = l. The analog of the numbers rn can be defined 
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here as well, requiring univalency of sm(z), (m^n), for \z\ <rn, 
but nothing is known about their determination and properties 
in general, doubtless a rather intricate question. I proved [35] 
that /l = l /4 , or each section remains univalent in the circle 
\z\ < l / 4 , a number which cannot be replaced by a larger one. 
An asymptotic characterization of the rn for n—»oo seems also 
to present some difficulties; however, these might not be insur
mountable. 

The methods used in the treatment of these problems are not 
quite simple. In general, Koebe's distortion theorem* is needed, 
sometimes even Löwner's theory of univalent functions.! 

14. Related Classes. Even more difficult is the treatment of 
"odd" univalent functions, that is, univalent functions of the 
form (1) with £2 = £4 = £6= • • • = 0 . Littlewood and Paley 
proved [20] that in this case \cn\ <K, Ci = l, K being an abso
lute constant. 

The treatment of star-shaped and convex representations is 
possible by using more elementary methods, primarily Cara-
théodory's theory of functions with a positive real part. 

Various elegant results have been recently found for univalent 
power series of the form (1) with real coefficients. For instance, 
the exact inequality \cn\ ^n, (n = 2, 3, 4, • • • ), holds in this 
case, Ci = l [Dieudonné, 4; Rogosinski, 26]. More generally, 
Rogosinski [26] studied power series of the form (1) assuming 
real values if and only if z itself is real. He obtains a complete 
characterization of this class (called "typisch-reell") in terms 
of the coefficients. 

Fejér examined [12, pp. 61-62] univalent functions with real 
coefficients having the property that the image of the unit circle 
has at most two points of intersections with every straight line 
parallel to the imaginary axis. The partial sums are in this case 
univalent in \z\ < 1/4$ and even in \z\ <3~ 1 / 2 if all the c2v dis
appear. 

By generalizing and combining these classes, numerous vari-

* See, for instance, G. Pólya and G. Szegö, Aufgaben und Lehrsatze aus der 
Analysis, (1925), vol. 2, p. 27, problem 151. 

f K. Löwner, Untersuchungen ilber schlichte konforme Abbildungen des Ein~ 
heitskreises, Mathematische Annalen, vol. 89 (1923), pp. 103-121. 

J Which is generally true for univalent functions (see above), but it can be 
proved much more easily in this case. 
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ations of the problem regarding the partial sums are possible 
[see, for instance, Takahashi, 38 and Noshiro, 21]. 

15. Power Series with Monotonie Coefficients. Finally another 
point of view likewise appearing in various recent investigations 
may be mentioned in a few words. Introduction of proper regu
larity properties for the whole sequence of coefficients is possi
ble. We can expect then an analogous regular behaviour of the 
partial sums, of the remainder sums, of some linear combination 
of the terms, and so on. From this point of view Fejér has re
cently investigated [13, 15] trigonometric and power series, 
the coefficients of which are monotonie of a definite order k, 
that is, having positive Oth, 1st, 2nd, • • • , &th differences. In 
this case certain positiveness, monotone character, or convexity 
properties of the partial sums can be proved. Furthermore, in a 
joint paper with Fejér [14] we introduced the notion of mono-
tonic convergence of a complex sequence \sn\ to the limit 5 
requiring the monotonie convergence of the positive numbers 
I sn — s\ to 0. We showed that this property holds for the partial 
sums of any power series, provided that the coefficients are 
monotonie of the order 2. However, it does not hold generally 
for power series with only simply monotonie coefficients. More 
exactly we have proved 

(35) I ƒ(*) I ^ I ƒ(*) - s0(z) I ^ • • • £ I ƒ(*) - *»(*) I è • • • . 

As a consequence of this fact we obtain 

(36) I f(z) - sn(z) I g I ƒ(z) I and hence [ sn(x) \ S 2 | f(z) | . 

A simple special case is that of the binomial series ƒ (2) = (1 — z)~p 

if 0 < p < l . The second inequality (36) corresponding to this 
case has been previously obtained, with a positive constant A 
instead of 2, by Chapman [3] and M. Riesz [23]; it has im
portance for the summability theory of Fourier and Laplace se
ries. As regards a direct proof see Szegö [32]. 

Assuming the so-called total monotony of the coefficients, the 
behaviour of the partial sums becomes still more regular. See 
Fejér [13]. 

Some of these results can be extended to integrals of the form 
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ƒ• +00 

f(t)e-**dt 
o 

which have properties analogous to those of power series. 

16. Conclusion. Numerous variations and analogs of the pre
ceding problems are possible and some of them can be solved 
in a more or less exhaustive way. It would be a long task to give 
a complete account of this topic. Our intention was to set forth 
only the most typical results of this field, illustrating the way 
in which properties of an analytic function are reflected in the 
terms or in the sections of its power series development. A great 
many open problems in this direction can be formulated easily. 
Only a general analytic taste is able to decide which of these 
questions is worth being dealt with and to what extent they are 
connected with characteristic properties of analytic functions. 
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