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A GENERALIZATION OF WARING'S PROBLEM* 

BY L. E. DICKSON 

1. Introduction. Define g(n, m) so that every integer ^ m is a 
sum of g nth powers, while not every integer ^ w i s a sum of 
g— 1 powers. I t is customary to write gin) for g(nf 0) =g(n, 1). 
Quite recently I evaluated g(n) for every n>6. 

For n=9 or 11, I evaluate gin, m) for each m below specified 
large values M. In particular, g ( l l , M)=336 and g(9, M) = 163 
are small compared with g( l l ) =2132 and g (9) =548. 

By use of the Hardy-Littlewood Theory and extensive tables, 
it was found that g(6) ^ 160. I here obtain g(6) = 110. 

2. Asymptotic Theory. Recently I provedf that, if n ^ 4 , every 
integer ^ N is a sum of s — 2 + 3k integral nth powers = 0, where 
the quantities are defined as follows. Let pe be the highest 
power of the prime p which divides n. Write 7 = 0 + 1 if p>2, 
7 = 0 + 2 if p = 2. Let D be the g.c.d. of p-1 and n/p6. Write 
ni = D(pt — l)/(p—l). Then the conditions on s (for Lemma B 
of A) are s>2n, s^m + 1, for every prime p. They hold for 
s ^13 if n = 6, and for s^2n + l if n is an odd prime or its square. 

Employ natural logarithms. If &(b) is the sum of the loga
rithms of all primes ^b, 

6 
0(b) = — (.92129)6 + 3 log2 b + 8 log b + 5. 

Take 

b = (1 + w)2/('"5), 

- log c = log » + {n + 1) log 3 + 2n2 log 2 + n(2n - l)û(b), 

C = 12(8^-3w-1)1 /22 (n-1) /%3(n-1) /2/(3/2)(1-1/"^2 , 

/ 1 \ (» - 1) 
N-Jin = C / 2 / = a 3 1 + 2 > 

\ In) 2n* 

* Presented to the Society, October 26, 1935. 
t Annals of Mathematics, vol. 37 (1936), pp. 293-316, cited as A; American 

Journal of Mathematics, July, 1936, cited as J. 
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1 \ * k > log r/ {log n — log (n — 1)} , 

n) ' r = ^2(6/£ — l ) / ( ^ — 1 — 2n2z), 

where z is positive and so small that 

1 + log (3/2)n~ l + (n - l ) / ( 2 0 - l o g N = ( — -/V1/n 

3. Case n = 6. The best result is obtained from s = 19. Take 
2 = 0.00002. Then the least integer k is 31. Using base 10 except 
as marked, we get 

log a = 2.3235310, - / = 0.0039946, â(b) = 257.984, 

- logee = 17086.33198, log6C = 2.11363, 

loglogN = 7.047165. 

All integers < / = 2120044 are sums of 86 sixth powers,* while 
all between I and L0 = 51 679 845 000 000 are sums of 33 sixth 
powers. Thenf all integers between / and Lt are sums of / + 33 
if log log L, = (0.0791813)/+0.9563804. Thus Lt^N if / = 77. 
But* + 33 = 1 1 0 = s - 2 + 3&. 

THEOREM 1. Every positive integer is a sum of 110 sixth powers. 

4. Case n = ll. Take 2 = 0.00001. The least integer k is 70. 
Also s^23. The best result is obtained from k = 100, 5 = 43. Then 

log a = 4.90212, - / = 0.0194770, â(b) = 388.19352, 

1 
- loge c = 89856.02131, l o g ô C < — n\ log log N = 7.343518. 

Denote the eleventh powers of 2, • • - , 9 by a, • • - , h. By an 
extended algebraic table (in MS), I proved that every integer 
between 

/ = 2g + h = 48 560 928 793 

and l+15b is a sum of 129 eleventh powers. By ascents, all be
tween 2 and L0 = 33 348 227X106 are sums of 171, and all be
tween / and Lt are sums of t+171, where 

* R. C. Shook, University of Chicago Dissertation, 1934. 
t This Bulletin, vol. 39 (1933), p. 711, Theorem 12. Here */ = l / 6 to seven 

decimal places. 

a = nl 

) ' • 
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log log Lt = Hog 1.1 + 0.3140358. 

Hence Lt^N if t^ 170. 

LEMMA 1. Every integer ^l is a sum of 341 eleventh powers. 

Elsewhere* I proved that 302 eleventh powers suffice from 
j = 2d+e = 460 453 306 to j + 1 4 c and are necessary for j + 66a 
+ 8^ + 9^+1416, while by ascent 321 powers suffice from j to 
far beyond /. 

LEMMA 2. Every integer ^j is a sum of 341 eleventh powers. 

5. To obtain further results for n = 11, employ 

(1) 6 = 8 6 a + 1 0 1 9 , c = 23b + 38a + 1139, 

(2) d = lie + 156 + 16a + 808, e = Id + 5c + 14a - 11. 

My method f to construct an algebraic table of minimum de
compositions is based on leaders L. Since L has a decomposition 
into fewer powers, the same is true of the sum of L and any 
linear function. The leaders <e are 

173a( = 10 + 2b), 64a + 165è, 36a + 189b, 356b, 253b + c, 
75a + 38b + 10c, 86a + 27cf 164& + 28c, 24a+ 1406 +29c, 
35a + 13b+46c, 115& + 65c, 82c, 126a+d, 127b+d, 
115a + 63b + 2d, 87a + 87b + 2d, 4:0a + 25b + 3d. 

Employ linear homogeneous functions in which the coeffi
cients of a, b, c, d are ^ — 8 6 , —23, —11, —7, respectively, 
by (1) and (2), and which have no leader as component. We 
obtain 87a —6 = 1029, 25 equations in a, b, c, 33 with —d, 25 
with -2d, 17 with -3d, 14 with -4a7, 12 with -Sd, 10 with 
— 6d, and 8 with —7d. 

We shall say that there is a peak (x, m), or peak x at m, if m 
is a sum of x, but not fewer, ^th powers, while all integers >m 
are sums of fewer than x powers. Thus m is the greatest integer 
requiring x nth powers. If (x', m') and (x, m) are consecutive 
peaks, every integer between m' and m is a sum of x nth powers. 

THEOREM 2. There are exactly 24 peaks = 3 3 6 if n = ll. They 
include 

* Journal of the London Mathematical Society, vol. 9 (1934), pp. 201-206. 
t This Bulletin, vol. 40 (1934), pp. 487-493. More details in American 

Mathematical Monthly, vol. 41 (1934), pp. 547-555. 
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Py = ( 1 1 8 5 - 1 1 9 ( i - l ) , j c + 8 5 a + 2047-120/) , (J = l, 2, 3); 
22* = (838-119*, (4 + &)c+85a + 1577-120&), (* = 0, 1, 2, 3); 
5 = (954, 3c+82a + 1697). 

If (x, m) is any of these peaks except Rs, also (x — 93, tn + 22b) 
is a peak. Together, these give the peaks with x = 1185, 1092, 1066, 
973, 954, 947, 861, 854, 838, 745, 719, 626, 600, 507, 481. The 
earlier peaks are (2132, u = 85a + 2047), (1211, u + 22b). Thelater 
peaks are 

(454, d+4c + 9b + 5a + 529), (383, 2d + 2c + 16b + 24a+1769), 
(373, w+47a + 769), (372, w + 75a + 740), (357, w + 83a + 740), 
(354, 3d + 2c + 17b + 36a + 762), (336, 6d + 2c+17b + 36a + 743), 

where w = 2d + 2c+17b. 

6. Case n = 9. Take 2 = 0.00001. The least integer k is 54. Also 
s = 19. We take s = 30,k = 80, and obtain 

log a = 4.8620425, - J = 0.0236148, â(b) = 346.26604, 

1 
- logee = 53104.1773, logeC < — n\ log logN = 6.9443023. 

If a, • • • , e denote the ninth powers of 2, •• - , 6, I proved* that 
all integers between h — 2dJre and Lo = 58221534000 are sums of 
140 ninth powers. By ascent as in §3, all between h and Lt are 
sums of/ + 140 if 

log log Lt = (0.0511525)/ + 0.3376543. 

Then L* = N if / = 130. This proves the following lemma. 

LEMMA 3. Every integer ^h = 2d + e is a sum of 270 ninth 
powers. 

THEOREM 3. There are exactly 19 peaks ^163ifn = 9.If (x, m) 
is one of the four peaks (314, c + 25a + 390), (220, c + 12b + 25a 
+ 284), (207, 3c + 12b + 25a + 269), (194, 5c+126 + 25a + 254), 
then (x — 5, ra + 12a) is a peak. The further peaks are (548, 37a 
+ 511), (333, 126 + 37a + 284), (208, 2c+37a + 390), (195, 
4c+37a + 375), (182, 6c+37a + 360), (181, a* + 66 + 25a + 220), 
(177, </ + 76 + 12a+492), (176, d + 7b + 26a+477), (175, d+Sb 
+ 2a + 235),(169,a7 + 86 + l l a + 2 2 0 ) , (163, 2aT + 116 + 12a+473). 

* This Bulletin, vol. 40 (1934), pp. 487-493. 
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The first four peaks give the greatest integers requiring 548, 
333, 314, 309 ninth powers, respectively. There is very strong 
evidence that a like result holds for the next 15 peaks. For ex
ample, all integers between e+d and e + 2d are sums of 128 ninth 
powers; all between e+2d and e + 3d are sums of 125. 

UNIVERSITY OF CHICAGO 

MAPS OF ABSTRACT TOPOLOGICAL SPACES 
IN BANACH SPACES* 

BY A. D. MICHAL AND E. W. PAXSON 

1. Introduction. This paper is to serve as a brief introduction 
to the method of considering the analysis of abstract topological 
spaces through the medium of homeomorphic mappings of these 
spaces on subsets of Banach spaces, f Our primary objective 
here, however, is to obtain for some general topological groups 
the abstract correspondents of the fundamental Lie partial dif
ferential equations for an r-parameter continuous group. J The 
essential notion is the treatment of the general situation with 
the aid of abstract coordinates in Banach spaces wherein the 
Fréchet differential may be used.§ 

By an abstract topological space is meant here a set of ele
ments of completely unspecified nature, together with an unde
fined concept, tha t of neighborhood of an element (we denote 
the elements by small Latin letters, and the neighborhood as
sociated with an element a by U(a)), satisfying the four Haus-
dorff postulates given below.|| 

* Presented to the Society, November 30, 1935. 
f S. Banach, Théorie des Opérations Linéaires, 1932. 
% S. Lie, Theorie der Transformationsgruppent vols. 1,3. 
§ M. Fréchet, Annales de l'École Normale Supérieure, (3), vol. 42 (1925), 

p. 293. Briefly, ƒ(x) on B\ to B2 has a differential a t x = x0, if there exists a func
tion ƒ(x; z) on Bi2 to B2l linear (additive and continuous) in z and such that 
given a p > 0 there is determined a n>0, so tha t \\f(xo-\-z)—f(xo)—f(xo;z)\\ 
ûp\\z\\ for | |s| | Sn(p); f(x0; z) is the differential. See also various papers by 
Hildebrandt, Graves, Kerner, Michal, and many others. 

|| F . Hausdorff, Mengenlehre, 1927, pp. 226-229. 


