# DEFINITION OF SUBSTITUTION 

BY W. V. QUINE*

1. Basis. The elements of this study, denoted by italic capitals, comprise atoms, at least two and perhaps infinite in number, and all finite sequences of such atoms. (The atoms are interpretable as signs, for example, and the sequences as rows of signs.) Thus each element $E$ is composed successively of possibly duplicative atoms $A_{1}, A_{2}, \cdots$, and $A_{m}$, for some positive integer $m$, called the length of $E$; and an element $F$ composed successively of atoms $B_{1}$ to $B_{n}$ will be identical with $E$ if and only if $m=n$ and $A_{i}=B_{i}$ for each $i$ to $m$.

Further terminology is self-explanatory. Thus we may speak of the $k$ th place of an element; this, in the case of $E$ above, is occupied by the atom $A_{k}$. We may speak of one element as occurring in another (as a connected segment thereof), and more particularly as occurring initially, internally, or terminally therein; of two elements as occurring overlapped in a third; of the number of occurrences of one element in another; and so on.

Juxtaposition will be used to express that binary operation of concatenation whereby any elements $E$ and $F$, composed as above, are put end to end to form that element $E F$ which is composed successively of the atoms $A_{1}, A_{2}, \cdots, A_{m}$, $B_{1}, B_{2}, \cdots$, and $B_{n}$. The element $E$ is itself describable, in terms of concatenation of its atoms, as $A_{1} A_{2} \cdots A_{m}$; parentheses are suppressed, as here, in view of the obvious associativity of concatenation.

It is clear that the length of $E F$, for any $E$ and $F$, exceeds the lengths of $E$ and $F$ and equals their sum; also that $E$ occurs initially and $F$ terminally in $E F$, while $E F$ occurs neither in $E$ nor in $F$; also that atoms are of length 1 , and that an element $G$ is an atom if and only if there are no elements $E$ and $F$ such that $G=E F$.
2. Substitution. The purpose of this paper is a formal definition of substitution in terms exclusively of concatenation and the following elementary logical devices: identity, applied to

[^0]elements; the truth functions; and quantification with respect to elements. The notation will be as in Principia Mathematica: the sign ' $=$ ' for identity, the signs ' $\sim$ ', ' $\supset$ ', $\cdots$, for the truth functions, and prefixes of the forms ' $(X)$ ' and ' $(\exists X)$ ' for quantification.

The proposition to be formulated is expressible verbally thus: $W$ is the result of substituting $X$ for $Y$ throughout $Z$; briefly, $\operatorname{sub}(W, X, Y, Z)$. When the elements are interpreted as signs and rows of signs, the notion under consideration is the notational substitution which figures so prominently in metamathematics.

In the general form in which substitution is here conceived, its formulation is complicated by the fact that the element $Y$ for which substitution is made need not be an atom and hence may have overlapping occurrences in $Z$. Obviously we cannot in general replace each of two overlapping occurrences of $Y$ by $X$, since replacement of one occurrence will mutilate the other occurrence. To this extent the notion of substitution is ambiguous. The ambiguity is resolved by stipulating that in case of overlapping occurrences left is to prevail over right; thus the result of substituting $X$ for $T T$ in $T T T$ is to be $X T$ rather than $T X$. The result of substituting $X$ for $Y$ throughout $Z$ is then describable, in general, as the result $Z^{\prime}$ of putting $X$ for each of these occurrences of $Y$ in $Z$ : the first (left-most); the first which begins after the end of that first; the first which begins after the end of this second; and so on. In the trivial case where $Y$ does not occur in $Z, Z^{\prime}$ is of course $Z$.
3. Formal Definitions. The following abbreviations are adopted:

D1.

$$
U \text { init } V .=_{\mathrm{df}} U=V . v:(\exists T) . U T=V .
$$

D2. $\quad U$ in $V .={ }_{d f} U$ init $V . v:(\exists T) . T U$ init $V$.
D3. $\quad U \sim i n V .=_{d f} \sim . \sim$ in $V$.
D4. $\Theta(U, V, M, N) .={ }_{\mathrm{df}} . M U M V M$ in $N . M \sim$ in $U V$.
D5. $\operatorname{sub} 1(U, X, Y, V) .={ }_{\mathrm{df}}: U$

$$
=X \cdot V=Y \cdot \vee:(\exists T) \cdot U=T X . V=T Y: \sim(\exists S) . Y S \text { in } V .
$$

Obviously ' $U$ init $V$ ' may be read ' $U$ occurs initially in $V$ ', and
' $U$ in $V$ ' may be read ' $U$ occurs in $V$ '. Again, 'sub $1(U, X, Y, V)$ ' tells us that $Y$ occurs in $V$ terminally and only so and that $U$ is the result of putting $X$ for $Y$ in $V$; this is seen as follows. For $Y$ to occur terminally in $V$ it is necessary and sufficient that either $V=Y$ or $(\exists T) \cdot V=T Y$. Where $V=Y$ it is clear further that $Y$ does not occur in $V$ otherwise than terminally; where $(\exists T) \cdot V=T Y$, on the other hand, in order that $Y$ not occur in $V$ otherwise than terminally it is obviously necessary and sufficient to add that $\sim(\exists S) \cdot Y S$ in $V$. In general, therefore, for $Y$ to occur in $V$ terminally and only so it is necessary and sufficient that

$$
V=Y \cdot \vee:(\exists T) \cdot V=T V: \sim(\exists S) . Y S \text { in } V
$$

Now if $U$ is the result of putting $X$ for $Y$ in $V, U$ will be $X$ or $T X$ according as $V$ is $Y$ or $T Y$. D5 thus yields the described meaning.

The definition of substitution follows:
D6. $\operatorname{sub}(W, X, Y, Z) .={ }_{\mathrm{df}}::: Y \sim \operatorname{in} Z . W=Z . v:::$.

$$
(\exists G)(\exists H):::(M)(N):: .(U)(V):: \operatorname{sub} 1(U, X, Y, V) . \text { د }
$$

$$
: V \text { init } Z . د . \Theta(U, V, M, N):(S)(T): \Theta(S, T, M, N)
$$

$$
\text { .TV init } Z \text {. כ . } \Theta(S U, T V, M, N):: \text { : } \Theta(G, H, M, N)
$$

$$
::: W=G \cdot Z=H \cdot v:(\exists K) \cdot Y \sim i n K \cdot W=G K
$$

$$
. Z=H K
$$

When abbreviations introduced by D1-D5 are eliminated in favor of their definientia, the definiens in D6 is seen to involve only concatenation and the elementary logical devices mentioned in §2.
4. Demonstrandum. It remains to show that D6 yields substitution in the sense of $\S 2$; that is, that $\operatorname{sub}(W, X, Y, Z)$, in the sense of D6, if and only if $W$ is $Z^{\prime}$ as of $\S 2$.

Supposing $W, X, Y$, and $Z$ given as constants, we define as follows:

$$
\begin{aligned}
\text { Dt1. } & \Phi(M, N) \cdot={ }_{\mathrm{df}}::(U)(V):: \operatorname{sub} 1(U, X, Y, V) \cdot \mathrm{כ}: \\
& V \text { init } Z \cdot \boldsymbol{כ} \cdot \Theta(U, V, M, N): \cdot(S)(T): \Theta(S, T, M, N) \\
& \cdot T V \text { init } Z \cdot \boldsymbol{כ} \cdot \Theta(S U, T V, M, N) .
\end{aligned}
$$

Dt2. $\Psi(F, G, H) \cdot={ }_{\mathrm{df}}: \cdot(M)(N): \Phi(M, N) \cdot \supset \cdot \Theta(G, H, M, N)$
$: \cdot F=G \cdot Z=H \cdot \vee:(\exists K) \cdot Y \sim$ in $K \cdot F=G K$

- $Z=H K$.

By $\S 1,(U)(V) \cdot X U X V X \sim$ in $X$; by D 4 , then, $(U)(V)$ - $\sim \Theta(U, V, X, X)$, so that
(1) $(U)(V): \cdot V$ init $Z \cdot \supset \cdot \Theta(U, V, X, X): \equiv \cdot \sim V$ init $Z$,

$$
\begin{equation*}
(G)(H): \cdot \Phi(X, X) \cdot \supset \cdot \Theta(G, H, X, X): \equiv \cdot \sim \Phi(X, X) \tag{2}
\end{equation*}
$$

and, trivially,

$$
(U)(V)(S)(T): \Theta(S, T, X, X) \cdot T V \text { init } Z
$$

$$
\begin{equation*}
\cdot \boldsymbol{\jmath} \cdot \Theta(S U, T V, X, X) \tag{3}
\end{equation*}
$$

By Dt1, (1), and (3),

$$
\Phi(X, X) \cdot \equiv:(U)(V): \operatorname{sub} 1(U, X, Y, V) \cdot \supset \cdot \sim \cdot V \text { init } Z
$$

whence $\sim \Phi(X, X) \cdot \boldsymbol{\nu} \cdot(\exists U)(\exists V) \cdot \operatorname{sub} 1(U, X, Y, V) \cdot V$ init $Z$, and therefore, by D5,
$\sim \Phi(X, X) \cdot \supset: \cdot(\exists V): \cdot V=Y \cdot \vee:(\exists T) \cdot V=T Y: \cdot V$ init $Z$, that is, $\sim \Phi(X, X) \cdot \boldsymbol{J}: Y$ init $Z \cdot v:(\exists T) \cdot T Y$ init $Z$, which is to say, by D 2 ,
(4) $\sim \Phi(X, X) \cdot כ \cdot Y$ in $Z$.

By Dt2, $(G)(H): \cdot \Psi(W, G, H) \cdot \supset: \Phi(X, X) \cdot \supset \cdot \Theta(G, H, X, X)$ whence, by (2) and (4),

$$
(G)(H): \Psi(W, G, H) \cdot כ \cdot Y \text { in } Z,
$$

that is, $(\exists G)(\exists H) \cdot \Psi(W, G, H) \cdot \supset \cdot Y$ in $Z$, or, equivalently,
(5) $\quad(\exists G)(\exists H) \cdot \Psi(W, G, H) \cdot \equiv: Y$ in $Z:(\exists G)(\exists H) \cdot \Psi(W, G, H)$.

If $Y$ does not occur in $Z$, then, by $\S 2, Z^{\prime}$ is $Z$. Hence
(6) $\quad Y \sim \operatorname{in} Z \cdot W=Z \cdot \equiv \cdot Y \sim$ in $Z \cdot W=Z^{\prime}$.

By D6, Dt1, and Dt2,

$$
\begin{aligned}
\operatorname{sub}(W, X, Y, Z) \cdot \equiv: Y \sim \operatorname{in} Z \cdot W=Z \cdot v: & (\exists G)(\exists H) . \\
& \Psi(W, G, H) .
\end{aligned}
$$

Hence, by (5) and (6),

$$
\begin{align*}
\operatorname{sub}(W, X, Y, Z) \cdot \equiv: Y \sim \operatorname{in} Z & \cdot W=Z^{\prime} \cdot v: Y \text { in } Z  \tag{7}\\
& :(\exists G)(\exists H) \cdot \Psi(W, G, H) .
\end{align*}
$$

Now if we can prove that
(I) $\quad Y$ in $Z \cdot \supset:(\exists G)(\exists H) \cdot \Psi(W, G, H) \cdot \equiv \cdot W=Z^{\prime}$,
so that $Y$ in $Z:(\exists G)(\exists H) \cdot \Psi(W, G, H): \equiv \cdot Y$ in $Z \cdot W=Z^{\prime}$, then from (7) we shall have

$$
\operatorname{sub}(W, X, Y, Z) \cdot \equiv \cdot Y \sim i n Z \cdot W=Z^{\prime} \cdot v \cdot Y \text { in } Z \cdot W=Z^{\prime}
$$

that is, $\operatorname{sub}(W, X, Y, Z) \cdot \equiv \cdot W=Z^{\prime}$ which was to be proved. It thus remains only to establish (I).
5. Proof of (I). Given that $Y$ occurs in $Z$, it is to be proved that

$$
(\exists G)(\exists H) \cdot \Psi(W, G, H) \cdot \equiv \cdot W=Z^{\prime}
$$

Consider the following segments $Z_{i}$ of $Z ; Z_{1}$ extends from the beginning of $Z$ to the end of the first occurrence of $Y$ in $Z ; Z_{2}$ extends from the beginning of $Z^{1}$ to the end of the first occurrence of $Y$ in $Z^{1}$, where $Z^{1}$ is $Z$ deprived of its initial segment $Z_{1}$; and, in general, $Z_{i+1}$ extends from the beginning of $Z^{i}$ to the end of the first occurrence of $Y$ in $Z^{i}$, where $Z^{i}$ is $Z$ deprived of its initial segment $Z_{1} Z_{2} \cdots Z_{i}$. By construction, $Y$ occurs in each $Z_{i}$ terminally and only so; in view of $\S 3$, then, where the $Z_{i}^{\prime}$ are the results of putting $X$ for $Y$ in the respective $Z_{i}$,

$$
\begin{equation*}
(i) \cdot \operatorname{sub} 1\left(Z_{i}^{\prime}, X, Y, Z_{i}\right) \tag{8}
\end{equation*}
$$

Let ' $Z_{1} Z_{2} \cdots Z_{i}$ ' and ' $Z_{1}^{\prime} Z_{2}^{\prime} \cdots Z_{i}^{\prime}$ ' be written ' $Z_{i}$ !' and ' $Z_{i}^{\prime}$ !'. Thus

$$
\begin{gather*}
Z_{1}!=Z_{1} \cdot Z_{1}^{\prime}!=Z_{1}^{\prime}  \tag{9}\\
(i) \cdot Z_{i+1}!=Z_{i}!Z_{i+1} \cdot Z_{i+1}^{\prime}!=Z_{i}^{\prime}!Z_{i+1}^{\prime} \tag{10}
\end{gather*}
$$

and, by construction,

$$
\begin{equation*}
(i) \cdot Z_{i}!\text { init } Z \tag{11}
\end{equation*}
$$

We exhaust the segments $Z_{i}$ only when we reach a point in $Z$ beyond which $Y$ occurs no more. Thus, where $Z_{n}$ is the last of the $Z_{i}$,

$$
\begin{equation*}
(K): Z=Z_{n}!K \cdot \nu \cdot Y \sim \text { in } K \tag{12}
\end{equation*}
$$

Quantification with respect to subscripts, as in (8)-(11), refers of course only to the $n$ or fewer significant values; for example, ' $(i) \cdot \phi\left(Z_{i}, Z_{i}^{\prime}\right)$ ', '( $\left.\exists i\right) \cdot \phi\left(Z_{i}, Z_{i}^{\prime}\right)$ ', and ' $(i) \cdot \phi\left(Z_{i}, Z_{i+1}\right)$ ' are short for

$$
\begin{aligned}
& \text { ‘ } \phi\left(Z_{1}, Z_{1}^{\prime}\right) \cdot \phi\left(Z_{2}, Z_{2}^{\prime}\right) \cdot \ldots \phi\left(Z_{n}, Z_{n}^{\prime}\right) \text { ', }, \\
& \text { ' } \phi\left(Z_{1}, Z_{1}^{\prime}\right) \vee \phi\left(Z_{2}, Z_{2}^{\prime}\right) \vee \ldots \phi\left(Z_{n}, Z_{n}^{\prime}\right) \text { ', }
\end{aligned}
$$

and

$$
' \phi\left(Z_{1}, Z_{2}\right) \cdot \phi\left(Z_{2}, Z_{3}\right) \cdot \ldots \phi\left(Z_{n-1}, Z_{n}\right) \text { '. }
$$

By $\S 1$, there are distinct atoms; let $A$ and $B$ be any two such, and, where $k$ is the length of $Z_{n}^{\prime}!Z_{n}!$, let $C=A B B \cdots B$ to $k$ occurrences of $B$. Clearly

$$
\begin{equation*}
(i) \cdot C \sim i n Z_{i}^{\prime}!Z_{i}! \tag{13}
\end{equation*}
$$

since the length of $C$ is greater by one even that that of $Z_{n}{ }^{\prime}!Z_{n}!$. Now it will be shown that, for any elements $G$ and $H$ such that $C \sim$ in $G H$, there are no occurrences of $C$ in $C G C H C$ except the three indicated ones. First, no two occurrences of $C$ can overlap; for, if they are distinct, one must start later than the other and hence must start at a non-initial place of the other; but all these non-initial places are occupied by $B$, whereas $C$ starts with $A$. Hence if there is an occurrence of $C$ in $C G C H C$ other than the three indicated ones, it overlaps none of the latter; it therefore lies wholly within $G$ or $H$. But it cannot, since, by hypothesis, $C \sim$ in $G H$. Consequently there are none but the three occurrences of $C$ in $C G C H C$. In particular, then, it follows from (13) that there are none but the three occurrences of $C$ in $C Z_{i}^{\prime}!C Z_{i}!C$.

Since, where

$$
\begin{equation*}
D=C Z_{1}^{\prime}!C Z_{1}!C C Z_{2}^{\prime}!C Z_{2}!C \cdots C Z_{n}^{\prime}!C Z_{n}!C \tag{14}
\end{equation*}
$$

$D$ is made up wholly of segments of the form $C Z_{i}^{\prime}!C Z_{i}!C$, any occurrence of $C$ in $D$ must lie either wholly within or partly within and partly beyond such a segment. But in the latter case the occurrence of $C$ in question would overlap the terminal occurrence of $C$ in $C Z_{i}^{\prime}!C Z_{i}!C$, whereas we saw that no two occurrences of $C$ could overlap: Hence every occurrence of $C$ in $D$ lies wholly within $C Z_{i}^{\prime}!C Z_{i}!C$ for some $i$. But $C Z_{i}^{\prime}!C Z_{i}!C$ was
seen to contain only the three indicated occurrences of $C$. Therefore $D$ contains only the $3 n$ occurrences of $C$ indicated in (14).

Where $C \sim$ in $G H, C G C H C$ contains, as was seen, only the three indicated occurrences of $C$, and is hence describable as beginning and ending with $C$ and containing just three occurrences of $C$ and no two adjacent. But, since $D$ contains none but its $3 n$ indicated occurrences of $C$, inspection of (14) shows that the only segments of $D$ fulfilling this description of $C G C H C$ are the segments $C Z_{i}!C Z_{i}!C$ for the various $i$; any other segment of $D$ beginning and ending with $C$ and containing three occurrences of $C$ would contain two adjacent. Hence, if $C \sim i n G H$ and $C G C H C$ in $D, C G C H C$ must be $C Z_{i}^{\prime}!C Z_{i}!C$ for some $i$; then $G$ and $H$ must be $Z_{i}^{\prime}$ ! and $Z_{i}!$. Thus, in view of D 4 ,

$$
\begin{equation*}
(G)(H): \Theta(G, H, C, D) \cdot \text {. . }(\exists i) \cdot G=Z_{i}^{\prime}!\cdot H=Z_{i}!. \tag{15}
\end{equation*}
$$

Conversely, by (14), (13), and D4,

$$
\begin{equation*}
(i) . \Theta\left(Z_{i}^{\prime}!, Z_{i}!, C, D\right) . \tag{16}
\end{equation*}
$$

By (15) and (16),
(17)* $\quad(G)(H): \Theta(G, H, C, D) . \equiv .(\exists i) . G=Z_{i}^{\prime}!. H=Z_{i}!$.

If $\operatorname{sub1}(U, X, Y, V)$, then, by $\S 3, Y$ occurs in $V$ terminally and only so and $U$ is the result of putting $X$ for $Y$ in $V$. But, if $V$ contains $Y$ just thus and if further $Z_{i}!V$ init $Z$, then $V$ must be $Z_{i+1}$, so that $U$ becomes $Z_{i+1}^{\prime}$; and where $U$ and $V$ are $Z_{i+1}^{\prime}$ and $Z_{i+1}$ it follows from (10) and (16) that $\Theta\left(Z_{i}^{\prime}!U, Z_{i}!V, C, D\right)$. Thus

[^1]$(U)(V)(i): \operatorname{sub} 1(U, X, Y, V) . Z_{i}!V$ init $Z . כ . \Theta\left(Z_{i}{ }^{\prime}!U, Z_{i}!V, C, D\right)$, and hence
$(U)(V): . \operatorname{sub1}(U, X, Y, V) . כ:$
$(S)(T):(\exists i) . S=Z_{i}^{\prime}!. T=Z_{i}!. T V$ init $Z . د . \Theta(S U, T V, C, D) ;$
that is, by (17),
\[

$$
\begin{align*}
& (U)(V): \operatorname{sub1}(U, X, Y, V) . \text { כ: }  \tag{18}\\
& \quad(S)(T): \Theta(S, T, C, D) . T V \text { init } Z . \text {. } \Theta(S U, T V, C, D) .
\end{align*}
$$
\]

Again, if $Y$ occurs in $V$ terminally and only so, and $V$ init $Z$, then $V$ must be $Z_{1}$; thus, where $\operatorname{sub} 1(U, X, Y, V)$ and $V$ init $Z$, $U$ and $V$ will be $Z_{1}^{\prime}$ and $Z_{1}$. But, by (9) and (16), $\Theta\left(Z_{1}^{\prime}, Z_{1}, C, D\right)$. Thus

$$
(U)(V): \operatorname{sub} 1(U, X, Y, V) . V \text { init } Z . כ . \Theta(U, V, C, D)
$$

From this and (18) it follows, by Dt1, that $\Phi(C, D)$. By Dt2, then,

$$
\begin{aligned}
& (G)(H):: \Psi(W, G, H) . כ: \Theta(G, H, C, D): \\
& \quad W=G . Z=H \cdot \vee:(\exists K) . Y \sim \text { in } K . W=G K . Z=H K
\end{aligned}
$$

that is, by (17),

$$
\begin{aligned}
& (G)(H):: \Psi(W, G, H) . כ:(\exists i) . G=Z_{i}^{\prime}!. H=Z_{i}!: \\
& \quad W=G . Z=H . v:(\exists K) . Y \sim \text { in } K . W=G K . Z=H K
\end{aligned}
$$

and hence

$$
\begin{aligned}
(\exists G)(\exists H) \cdot \Psi(W, G, H) . כ: & (\exists i): W=Z_{i}^{\prime}!. Z=Z_{i}!. v: \\
(\exists K) . Y & \sim \text { in } K . W=Z_{i}^{\prime}!K . Z=Z_{i}!K .
\end{aligned}
$$

But, whether $Z=Z_{i}!$ or $(\exists K) . Y \sim i n K . Z=Z_{i}!K, i$ must be $n$ : for in neither case does $Z$ contain any occurrence of $Y$ after $Z_{i}$ !. Thus

$$
\begin{align*}
(\exists G)(\exists H) \cdot \Psi(W, G, H) . & \text { د. } W=Z_{n}^{\prime}!. Z=Z_{n}!. v: \\
& (\exists K) \cdot W=Z_{n}^{\prime}!K . Z=Z_{n}!K . \tag{19}
\end{align*}
$$

Of the occurrences of $Y$ in $Z$, the one in $Z_{1}$ is, by construction, the first, the one in $Z_{2}$ is the first which begins after the end of that first, and so on. Therefore if each $Z_{i}$ is supplanted in $Z$ by
$Z_{i}^{\prime}$, so that $Z_{n}$ ! is supplanted by $Z_{n}^{\prime}$ !, the result will be $Z^{\prime}$ as described in §2. $Z^{\prime}$ is thus $Z_{n}^{\prime}!$ or $Z_{n}^{\prime}!K$ according as $Z$ is $Z_{n}$ ! or $Z_{n}!K$. By (19), then,

$$
\begin{equation*}
(\exists G)(\exists H) \cdot \Psi(W, G, H) . \supset \cdot W=Z^{\prime} \tag{20}
\end{equation*}
$$

If $\Phi(M, N)$, then, by Dt 1 , $\operatorname{sub1}\left(Z_{1}^{\prime}, X, Y, Z_{1}\right) . כ: Z_{1}$ init $Z . د . \Theta\left(Z_{1}^{\prime}, Z_{1}, M, N\right)$
and
(i): . $\operatorname{sub1}\left(Z_{i+1}^{\prime}, X, Y, Z_{i+1}\right) . Ј: \Theta\left(Z_{i}^{\prime}!, Z_{i}!, M, N\right)$.

$$
Z_{i}!Z_{i+1} \text { init } Z . \text { د. } \Theta\left(Z_{i}^{\prime}!Z_{i+1}^{\prime}, Z_{i}!Z_{i+1}, M, N\right)
$$

But these two results reduce, in view of (8)-(11), to

$$
\Theta\left(Z_{1}^{\prime}!, Z_{1}!, M, N\right)
$$

and

$$
(i): \Theta\left(Z_{i}^{\prime}!, Z_{i}!, M, N\right) \text {. د. } \Theta\left(Z_{i+1}^{\prime}!, Z_{i+1}!, M, N\right) \text {, }
$$

and from these it follows that $\Theta\left(Z_{n}^{\prime}!, Z_{n}!, M, N\right)$. Thus

$$
\begin{equation*}
(M)(N): \Phi(M, N) . כ . \Theta\left(Z_{n}^{\prime}!, Z_{n}!, M, N\right) . \tag{21}
\end{equation*}
$$

By (11) and D1, $Z$ is $Z_{n}$ ! or else $Z_{n}!K$ for some $K$; and, as seen above, $Z^{\prime}$ is in these respective cases $Z_{n}{ }^{\prime}!$ and $Z_{n}{ }^{\prime}!K$. Moreover, in view of (12), $Y \sim$ in $K$. Thus
$Z^{\prime}=Z_{n}^{\prime}!. Z=Z_{n}!. v:(\exists K) . Y \sim i n K . Z^{\prime}=Z_{n}^{\prime}!K . Z=Z_{n}!K$.
From this and (21) it follows, by Dt2, that $\Psi\left(Z^{\prime}, Z_{n}{ }^{\prime}!, Z_{n}!\right)$. Hence

$$
W=Z^{\prime} \cdot \supset \cdot(\exists G)(\exists H) \cdot \Psi(W, G, H),
$$

and consequently, by (20),

$$
(\exists G)(\exists H) \cdot \Psi(W, G, H) . \equiv . W=Z^{\prime},
$$

which was to be proved.
Harvard University


[^0]:    * Society of Fellows, Harvard University.

[^1]:    * This exemplifies a general technique, within a concatenation system, for eliminating reference to a finite class or relation of elements in favor of reference to two properly selected elements $C$ and $D$. Where $\alpha$ is the $m$-adic relation (or class, if $m=1$ ) exhibited by just the elements $Q_{i 1}, Q_{i 2}, \cdots$, and $Q_{i m}$ in that order, for the various $i$ from 1 to $n$, and $k$ is the length of the element

    $$
    Q_{11} Q_{12} \cdots Q_{1 m} Q_{21} Q_{22} \cdots Q_{2 m} \cdots Q_{n 1} Q_{n 2} \cdots Q_{n m},
    $$

    and $C$ is $A B B \cdots B$ to $k$ occurrences of $B$, and $D$ is

    $$
    C Q_{11} C Q_{12} \cdots C Q_{1 m} C C Q_{21} C Q_{22} \cdots C Q_{2 m} C \cdots C Q_{n 1} C Q_{n 2} \cdots C Q_{n m} C,
    $$

    it can be shown that

    $$
    C G_{1} C G_{2} \cdots C G_{m} C \text { in } D \cdot C \sim \operatorname{in} G_{1} G_{2} \cdots G_{m}
    $$

    if and only if $G_{1}, G_{2}, \cdots$, and $G_{m}$ exhibit in that order the relation $\alpha$. In (17) this equivalence is proved for the special case where $m=2 ; G, H, Z_{i}^{\prime}$ !, and $Z_{i}$ ! answer to $G_{1}, G_{2}, Q_{i 1}$, and $Q_{i 2}$.

