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v = a2 \ n — m -\ 1 h • • • H ) • 
L <T2\bii bmm)J 

Again we observe that the expected value of v is (n — m)cr2 

when each of the m linear forms is equated to zero. However, 
if s of the m linear forms are equated to their respective stand
ard derivations while the remaining m — s are equated to zero, 
then v = (n~rn+s)<j2. Finally we see that the expected value of 
v, for a fixed set of u's, is not in general an integral multiple of 
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The object of this note is to prove the following theorem. 

THEOREM. Let R be a simply connected "schlicht" region in the 
w-plane whose boundary contains the point w = 0. Let w = 0 be 
"accessible" along the Jordan curve L. Suppose that there is a 
circle \w \ <p such that the part of the boundary of R which is in-
side this circle lies within the angles 

(1) | arg w — h+ | g k+y | arg w — A_| ^ &_, {h- ^ h+). 

Suppose, furthermore, that L connects w = 0 with a boundary point 
outside \w | =p such that L divides R into two sub-regions. Let all 
boundary points of one sub-region which are in \w \ <p, and not on 
L, be in one of the angles (1), and those of the other sub-region 
which are in \w | <p, and not on L, be in the other. 

Let w — w{z) map \z— 1 | < 1 conformally on R in such a man
ner that its inverse function approaches 0 as w—>0 along L. Let 

(2) 
*w-7KiH-)**+(i-)4 

t Presented to Society, October 26, 1935. 
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Then 

(3) — e — i£(arg z) S arg w(z) — #(arg z) ^ i£(arg z) + €, 

where e—»0 #s 3—-K) iw any fixed angle A®: |arg 2; | ^ ® <7r/2. 

Before proving this theorem we make the following remarks. 
1. If the hypothesis of this theorem is satisfied for k+ = k- = k, 

where k is any arbitrary positive number, provided p is small 
enough, then we say that the boundary of R has a corner of 
measure ft = h+ — h-. at w = Q. In this case (3) means that 

w(z) 
lim arg —— 

exists as z—>0 in any fixed angle ^ 0 . 
If /3 = 7T, we shall say that the boundary of R has a tangent at 

w = 0. 
2. Our theorem generalizes the well known result of C. 

Carathéodoryf and E. Lindelof,J namely, that the conformai 
representation of the interior of a Jordan curve on a circle is 
"quasiconform" at a boundary point with a corner of measure 
/3>0, that is, the angles at this boundary point are transformed 
proportionally. This result has been extended recently by J. 
Wolff§ for /3 = 7T for the case where the boundary is not neces
sarily a Jordan curve. In 1918 W. Gross|| obtained a theorem 
which infers the result of our theorem from a less general hy
pothesis. H A theorem analogous to ours for the case where the 

f C. Carathéodory, Schwarz-Festschrift, pp. 40-41. See also Conformai 
Representation, Cambridge Tracts in Mathematics and Mathematical Physics, 
No. 28, pp. 91-93. 

% E. Lindelof, Compte Rendu du quatrième congrès des mathématiciens 
Scandinaves, Stockholm, 1916, p . 87. 

§ J. Wolff, Comptes Rendus, vol. 200 (1935), pp. 42-43. 
Il W. Gross, Mathematische Zeitschrift, vol. 2 (1918), p. 278. 
If His hypothesis can be stated as follows (see loc. cit., pp. 276-277): Let 

R} the point O(w=0) and L have the same meaning as in our theorem. Draw 
a circle cn with center 0 and radius 1 /n, where n ^ n0 is so large that cn intersects 
the curve L, Follow L from O up to the first point of intersection Pn with cn. 
Let yn denote the longest open arc of cn within R containing P n . Every "cut" 
7n, (w = wo, Wo+1, • • • ), divides R into two regions. Call Bn tha t one which 
contains the part of L from 0 to P n . Let Tn be the part of the boundary of Bn 

which Bn has in common with R. According to Carathéodory's "Primenden" 
theory the accessible boundary points of R can be arranged in a "cyclic order" 
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boundary of R in the neighborhood of 0 is a Jordan curve has 
been given recently by A. Ostrowski.f All results mentioned 
above are contained as special cases in the theorem given in this 
note. 

For the proof of our theorem we need the following lemma. 

LEMMA. Let w(f) be harmonic and bounded in the circle 
|f — 1 | < 1. Suppose that there exists an arc a+of |f — 1 I = 1, start

ing from C = 0,in the upper half-plane and an arc a-of |f — 1 | = 1, 
starting from f = 0, in the lower half-plane such that the radial 
boundary values w*(f) of #(f) on |f — 1 | = 1 , which exist f or al
most all f on |f — 1 ( = 1, satisfy the conditions 

(4) | #*(f) — h+ | S k+ on a+, | w*(f) — h-\ ^ L w a_, 

where h+, h-, k+^0 and &_^0 are given numbers. Then, if arg f 
is the branch which is Ofor f real and > 0 , 

(5) - e - #(arg f) ^ «(f) - #(arg f ) ^ e + i£(arg f) , 

where e—»0 as f —->0 in any way at all, and K{a) and H (a) are the 
functions given in (2). 

PROOF. The function 

PU) • «(f) - #(arg f) - #(arg f) 

is harmonic and bounded in |f — 1 | < 1. Because of (4) its boun
dary values P*(f) on |f — 1 | = 1 which exist for almost all values 
of f on |f — 1 | = 1 satisfy the relation 

ïîm P*(f) S 0. 

by means of the conformai representation of R. Gross requires now that all 
directions from O to another accessible boundary point P?*0 of Tn for all P 
"before" O be within one of the angles (1) and for all P "behind" O be in the 
other, provided n is sufficiently large. It is easily seen that , if this hypothesis 
is satisfied, then also that of our theorem holds. The converse is not necessarily 
true, as simple examples like the following show: R is the circle \w —1| < 1 
without the following segments: (i) {arg (w — l ) = x /2 , 3 / 4 ^ | w — 1 | ^ l } and 
(ii) {7r-7r / (2w)^arg ( W - 1 ) ^ T T / 2 , | w - l | = 1 - 1 / W 2 } , («=-2, 3, • • • ); the 
boundary point in question is w — 0 and L is the radius at w — 0. Our hypothesis 
is evidently satisfied with h+— —h-^ir/2 and any &+ = &_ = &>0, if p is small 
enough. But the hypothesis of Gross is not fulfilled, 

t Acta Mathematica, vol. 64 (1935), pp. 172-174. 
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Furthermore, since P(f) is bounded, it can be represented by 
the Poisson integral with the boundary function P*(f). There
fore, according to a theorem on Poisson's integral due to 
A. Ostrowski, 

ïïm P(f) ^ 0 

as f—»0 in |f — 1 | < 1 in any way at all.t 
This proves the inequality on the right side of (5). That 

on the left is obtained by applying the same argument to 
-[u(Ç)-H(axg t)+K(zrg {)]. 

PROOF OF THE THEOREM. 1. Let Sp denote the largest con
nected subregion of R and of \w \ <p containing the part of L 
which is obtained when L is described from 0(w = 0) up to the 
first point of intersection P with \w | =p . Call a the longest arc 
of \w I =p within R containing P ; a is part of the boundary of 
Sp. The region Sp is simply connected. Therefore we can map 
the circle |f — 1 [ < 1 on Sp conformally by means of a function 
w=co(f) such that its inverse function approaches O as w—»0 
along L. According to a well known theorem on correspondence 
at the boundary in conformai mapping, there is an arc a" on 
|f — 1 | = 1 which contains <T = 0 neither as an interior point nor 

as an end point, and which is mapped by co(f) on the arc a. The 
function co(f) thus has continuous boundary values on the open 
arc a". Being bounded, co(f) assumes radial boundary values 
different from 0 at all other points of |f — 1 | = 1, except perhaps 
for a set of Lebesgue measure 0. Since co(f) is univalent in 
|f — 1 I < 1, these boundary values are necessarily different from 
the interior points of a. Therefore they lie within the angles (1). 

2. Denote now by a+ and OL_ the two arcs of |f — 1 | = 1 , re
spectively, extending from f = 0 up to the end points of a" , the 
first starting in the upper, the second in the lower half-
plane. Then we prove: For almost all points f = l-{-eid on a+, 
\imp->iœ(l+peid) lies in the first of the angles (1), and for almost 
all f = l+eid on a_, this limit lies in the second of the angles (1). 

In order to establish this result, we need only show that if 

t See A. Ostrowski, Jahresbericht der Deutschen Mathematiker-Vereini-
gung, vol. 36 (1927), p. 350. 
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f' and f" are two points on the same arc, say a+, at which the 
radial limits w' and w" of co(f) exist and are different from 0, 
then wf and w" are in the same angle. Denote by L" the image 
of the part OP of L within Sp by means of the inverse function 
of co(f). The arc Ln is a Jordan arc, ending at f = 0. Therefore 
we can find a point f ƒ on the radius at f' and a point f ƒ ' on 
the radius at f" and a Jordan arc 7 ' within |f — 1 | < 1 joining 
fi' and f 1", such that the curve 7, formed by 7 ' and the two 
straight segments f/f' and f i ' f " , does not intersect L " . The 
image of 7 by means of w=co(f) is an arc within 5P joining w' 
and wn, which does not intersect L. Therefore w' and w" must 
be in the same angle. 

3. Any branch of argco(f) is harmonic and bounded in 
|f — l | < l . According to what we have said above, limp^i 

arg o)(l+peid) exists for almost all points on |f — 1 | = 1 and, if 
the branch is suitably chosen, we have 

and 

lim arg co(l + peid) — h+ 

lim arg co(l + peie) — h. 

S k+ on <x+, 

^ k- on a_. 

Therefore we can infer from the preceding lemma: 

(6) - v - #(arg f) ^ arg «(f) - #(arg f) g i£(arg f) + ry, 

where 77—K) as f —>0 iw |f — 1 | < 1 in any way at all. 
4. In order to obtain the connection between co(f) and w{z) 

we first note that the inverse function of w{z) maps Sp on a sub-
region Sp of the circle \z — 1 | < 1 and the part OP of L on an 
arc L' ending at z = 0. If z(f) is a suitable function which maps 
|f — 1 J < 1 on Sp in such a manner that its inverse function ap

proaches 0 as z—>0 along L , then co(f) =^(s( f ) ) . We shall estab
lish a property of s(f) at f = 0. 

The boundary of 5 / consists: (i) of a Jordan arc a' in 
12; — l I < 1 which is the image of the arc a of the boundary of 

Sp and joins two points of \z — 1 | = 1, different from each other 
and from z = 0 ; (ii) of another point set 2P' in \z — 1 | ^ 1, contain
ing z = 0. W!e £m>e that Sp' has a tangent at z = 0 iw the sense of the 
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definition given in the first remark above. Let €, (0<e<7r /2) , be 
an arbitrarily given number. According to a well known theorem 
of Lindelof,* w(z) —»0 uniformly in the angle |arg z\ Sir/2 — e. 
Therefore we can find a circle C with center z = 0 such that the 
image a of the sector <r', formed by this angle and an arc of C, 
by means of w(z), lies inside \w | <p . Moreover, a is inside SP1 

as can be seen in the following way. If at least one point of the 
arc L' is in c ' , then a is evidently part of Sp. If, however, <r' 
does not contain any points of Z/, then we consider the closed 
Jordan curve, T', formed by a sub-arc OQ of L ' , the radius I at 
£ = 0, and an arc joining Q and 3 = 1 inside | s — 1 | < 1 . Since 
lim Zj^0w(z) = 0 on I ' and on /, w(z)—*0 uniformly as z—>0 in 
the interior of r ' . f Hence, if we join a point Z\ of L' to a point 
z2 of I by an arc y ' within T', in a sufficiently small neighbor
hood of 3 = 0, the image y will join w(zi) to w(z2) and will lie 
in \w\ < p . Since w(s2) is a point in <r, this proves that a is in 
the same subregion of R as the part OP of L, that is, o* is in Sp. 

The fact that a is inside 5P shows that all boundary points 
of Sp are outside the sector a'. But since they certainly are 
within 13—1 | ^ 1 , this proves the result about the tangent at 
3 = 0. 

5. Now we observe that, if p is replaced by a smaller number 
r, the region Sr is a subregion of Sp and therefore 5 / is a sub-
region of Sp . The boundary of 5 / , as well as that of Sp', consists 
of a Jordan arc, joining two points of \z — 1 | = 1, different from 
each other and from 3 = 0, and of another point set 2 / contain
ing 3 = 0. The set 2 / is part of 2P

7. Furthermore, if p—>0, 
Sp is contracted to the point 3 = 0. Therefore, given any e, 
(0<e<7r /2) , we can find a p=p(e), such that for this p the part 
2P' of the boundary of Sp lies inside the angles 

7T X 7T 7T 

_: arg z = \- e, and e = arg z ^ — 
2 2 2 2 

We assume that a fixed number € is given, and that p and 
accordingly Sp is chosen in such a manner that this condition is 
satisfied. Then Sp' evidently satisfies conditions at 3 = 0 analo-

* See Acta Societatis Scientiarum Fennicae, vol. 46 (1915), no. 3, p. 10. 
t See, for example, L. Bieberbach, Lehrbuch der Funktionentheorie, vol. 2, 

p. 21. 
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gous to those of Sp at w = Q with h+= — h- = w/2, &+ = &_ = €. 
Therefore, we can apply the relation (6) and obtain the result 
that, for a suitably chosen branch of arg z(Ç) and arg f, 

(7) Hm" | arg s(f) - arg f | ^ e 

as f—»0 in |f — 1 | < 1 in any way at all. 
Let f = Ç(z) denote the inverse function of s(f). Then f(s)—»Q 

as s—>0 in any fixed angle A® : |arg 2 | ^@ <7r/2 within 5P ' . From 
this and (7) it follows easily that also 

(8) lim I arg f (z) — arg z | ^ e 
z-K) 

as 2—»0 in any fixed angle A%. 
6. By observing that w(z(Ç)) = o>(£") we obtain for z in A® 

lim [arg w(g) — #(arg z) — i£(arg z)] 
* - » 0 

g 1ST [arg «(f) - ff(arg f) - tf(arg f)] 

+ I S " I #(arg (f (s))) - #(arg 2) | 

+ Ï S " | X ( a r g r ( « ) ) - X ( a r g « ) | . 
z->0 

From (6) and (8) it follows that 

lim [arg w(z) — #(arg 2) — i£(arg z)] 
*-*0 

^ — [(k+-kj) + \k+-k-\ j . 
7T 

In the same way we obtain 

lim [arg w(z) — #(arg z) + ÜT(arg 2)] 
z->0 

^ - — [ ( A + - AL.) + | * + - É _ | ] . 

Since this holds for any e > 0 and the left side is independent 
of e, we can let e tend to 0 and obtain the result (3). 

SCHOOL OF ELECTRICAL ENGINEERING, 

CORNELL UNIVERSITY 


